• Title/Summary/Keyword: Generated PWM

Search Result 158, Processing Time 0.031 seconds

A Study on the P.H.E of Inverter for Induction Motor Drive (유도 전동기 구동을 위한 인버터의 특정고조파제거에 관한 연구)

  • 전희종;김국진;정원석;최영한
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1989.10a
    • /
    • pp.51-58
    • /
    • 1989
  • In this paper, the technique of particular harmonics elimination in three-phase PWM Inver-ter output waveform and the method for speed control of a squirrel cage I.M. are introduces. The required switching patterns are determind on personal computer and the results are stored in look-up table in EPROM for controlling the switching of the Inverter devices. In this system, the microprocessor(Intel 8086)computes the actual Motor speed from the pulses generated in a Incremental Encoder, compares the actual speed with the reference speed. And the PI(Proportional-Integral) controller is used to adjust the frequency of the Inverter that feeds the Motor.

  • PDF

Reverse Current Control Method of Synchronous Boost Converter for Fuel Cell (연료전지용 동기식 부스트 컨버터의 역전류 제어방식)

  • Kim, Mi-Ji;Shin, Min-Ho;Choi, Seong-Chon;Kim, Ji-Hwan;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.411-412
    • /
    • 2013
  • This paper proposes the reverse current control method of synchronous boost converter for fuel cell. In order to implement a high efficiency charger with the synchronous boost converter, using MOSFETs instead of diodes is essential. Using the conventional boosting method, the reverse current is generated during transient state due to the nature of fuel-cell which needs soft starting depending on the amount of hydrogen. By using PWM control method, fuel-cell can be protected from being damaged by reverse current, so synchronous boosting method can be applied to charger applications. The experimental results are shown to verify that the implementation of high-efficiency converter is possible.

  • PDF

The Consideration for the Loss Characteristics accompanied by Variation of Inverter waveform in Induction Motor (인버터 파형 변화에 따른 유도전동기의 손실 특성 고찰)

  • Baek, Soo-Hyun;Youn, Shin-Yong;Kim, Seong-Cheol;Kim, Pill-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.174-176
    • /
    • 1995
  • An additional consideration for using general Induction Motor are about copper loss by harmonic component of source, and increase of iron loss due to switching frequency in semiconductor devices, so that these losses come to be significant elements on design for motors used for variable V/F. In this paper, therefore, the effects of the losses are discussed, in the case the source is generated by square wave and PWM Inverter.

  • PDF

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF

Implemented Logic Circuits of Fuzzy Inference Engine for DC Servo Control Using decomposition of $\alpha$-level fuzzy set ($\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지추론 연산회로 구현)

  • 이요섭;손의식;홍순일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1050-1057
    • /
    • 2004
  • The purpose of study is development of a fuzzy controller which independent of a computer and its software for fuzzy control of servo system. This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of $\alpha$-level fuzzy sets, It is propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness of quantified $\alpha$-levels on input/output characteristics of fuzzy controller and output response of DC servo system is investigated. It is concluded that $\alpha$-cut 4 levels give a sufficient result for fuzzy control performance of DC servo system. The experimental results shows that the proposed hardware method is effective for practical applications of DC servo system.

Power control of PTC heating element using variable AC Cycles (AC Cycles 가변을 이용한 PTC 발열체의 전력제어)

  • Gong, Jae-Woong;Lee, Young-Joo;Kim, Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.355-361
    • /
    • 2011
  • The power control of the existing heating element has been using the On-Off control, phase control, and PWM control. In case of controlling power PTC heating element developed recently with the existing method, the temperature is unable to be precisely controlled or the harmful electromagnetic wave to human body is generated. In this paper, We suggest the power control of PTC heating cable using variable AC Cycles. This regards the AC cycle of N as the unit of the power control. It determines On-Off for each cycle. It is the AC power control method in which it arranges the on-cycle in N cycles in the random and it supplies the current continuously. At this time. the minimal electric power amount becomes 1/N. The maximum current amount becomes 1 and sets up the number of on cycles according to the set value and can control the electric power with the step of N consistently. In the PTC heating system, we show that proposed power control method is superior in the EMI and temperature control property using MATLAB simulation, experiments and measurements.

Comparison of Methods of Selecting the Threshold of Partial Duration Series for GPD Model (GPD 모형 산정을 위한 부분시계열 자료의 임계값 산정방법 비교)

  • Um, Myoung-Jin;Cho, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.527-544
    • /
    • 2008
  • Generalized Pareto distribution (GPD) is frequently applied in hydrologic extreme value analysis. The main objective of statistics of extremes is the prediction of rare events, and the primary problem has been the estimation of the threshold and the exceedances which were difficult without an accurate method of calculation. In this paper, to obtain the threshold or the exceedances, four methods were considered. For this comparison a GPD model was used to estimate parameters and quantiles for the seven durations (1, 2, 3, 6, 12, 18 and 24 hours) and the ten return periods (2, 3, 5, 10, 20, 30, 50, 70, 80 and 100 years). The parameters and quantiles of the three-parameter generalized Pareto distribution were estimated with three methods (MOM, ML and PWM). To estimate the degree of fit, three methods (K-S, CVM and A-D test) were performed and the relative root mean squared error (RRMSE) was calculated for a Monte Carlo generated sample. Then the performance of these methods were compared with the objective of identifying the best method from their number.

Development of Pulsating Type Electromagnetic Hammer Drive Systems (맥동파 전자해머 구동시스템의 개발)

  • Ahn, Dong-Jun;Nam, Hyun-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.269-274
    • /
    • 2016
  • This paper proposes the development of a low frequency electronic hammer drive system that is used to prevent scaling or clogging in the hopper process. The electro-mechanical hammering driving method involves the generation of vibration and impact energy. The operation principles of the electromagnetic hammer were considered by parallel/series spring coefficient analysis and the amount of kinetic energy generated was calculated from the product of the equivalent spring constant, which is coupled with the E core and the gap of between the E core and I core. In addition, the Pulsation Driving algorithm was applied to the proposed electromagnetic hammer to obtain the maximizing kinetic energy. This algorithm was then implemented by a logical AND operation process and micro-controller (atmega128) built in functions with a timer interrupt and PWM generation function. The driving circuit of the electromagnetic hammer was designed using the H-bridge type IGBT circuit. The experimental test was performed by usefulness of the developed electromagnetic hammer systems with the acceleration measurement method. The experimental result showed that the proposed system has good kinetic energy generation performance and can be applied to the hopper process.

The Improvement of Output Voltage of UPS Using a Parallel Control Method (병렬 제어기법을 이용한 UPS 출력 전압의 개선)

  • 成 炳 模;姜 弼 淳;朴 晟 濬;金 喆 禹
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • This paper presents a proper parallel control method using a conventional control and a repetitive control for improving the output voltage waveform of uninterruptable power supply. Although first-order prediction control method shows a good characteristics to rectifier load, it is not sufficient to reduce steady state errors generated in nonlinear loads such as rectifier loads and phase controled loads. So we also employed a repetitive control method. A repetitive control method can eliminate steady state errors in the distorted output voltage caused by cyclic loads. The presented control scheme is verified through simulation and experiment. Experimental results Implemented on a single phase PWM inverter equipped with a LC output filter with 3 kVA, 60 Hz are shown.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.