Journal of the Korean Data and Information Science Society
/
v.24
no.3
/
pp.523-532
/
2013
Generally, data mining is the process of analyzing big data from different perspectives and summarizing it into useful information. The most widely used data mining technique is to generate association rules, and it finds the relevance between two items in a huge database. This technique has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, etc. Among many interestingness measures, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The attributably pure confidence and compared confidence are able to determine the direction of the association, but their ranges are not [-1, +1]. So we can not interpret the degree of association operationally by their values. This paper propose a compared and attributably pure confidence to compensate for this drawback, and then describe some properties for a proposed measure. The comparative studies with confidence, compared confidence, attributably pure confidence, and a proposed measure are shown by numerical example. The results show that the a compared and attributably pure confidence is better than any other confidences.
Proceedings of the Korean Society for Bioinformatics Conference
/
2000.11a
/
pp.21-22
/
2000
Expressed sequence tags (EFTs) are the partial segments of cDNA produced from 5 or 3 single-pass sequencing of cDNA clones, error-prone and generated in highly redundant sets. Advancement and expansion of Genomics made biologists to generate huge amount of ESTs from variety of organisms-human, microorganisms as well as plants, and the cumulated number of ESTs is over 5.3 million, As the EST data being accumulate more rapidly, it becomes bigger that the needs of the EST analysis tools for extraction of biological meaning from EST data. Among the several needs of EST analyses, the extraction of protein sequence or functional motifs from ESTs are important for the identification of their function in vivo. To accomplish that purpose the precise and accurate identification of the region where the coding sequences (CDSs) is a crucial problem to solve primarily, and it will be helpful to extract and detect of genuine CD5s and protein motifs from EST collections. Although several public tools are available for EST analysis, there is not any one to accomplish the object. Furthermore, they are not targeted to the plant ESTs but human or microorganism. Thus, to correspond the urgent needs of collaborators deals with plant ESTs and to establish the analysis system to be used as general-purpose public software we constructed the pipelined-EST analysis system by integration of public software components. The software we used are as follows - Phred/Cross-match for the quality control and vector screening, NCBI Blast for the similarity searching, ICATools for the EST clustering, Phrap for EST contig assembly, and BLOCKS/Prosite for protein motif searching. The sample data set used for the construction and verification of this system was 1,386 ESTs from human intrathymic T-cells that verified using UniGene and Nr database of NCBI. The approach for the extraction of CDSs from sample data set was carried out by comparison between sample data and protein sequences/motif database, determining matched protein sequences/motifs that agree with our defined parameters, and extracting the regions that shows similarities. In recent future, in addition to these components, it is supposed to be also integrated into our system and served that the software for the peptide mass spectrometry fingerprint analysis, one of the proteomics fields. This pipelined-EST analysis system will extend our knowledge on the plant ESTs and proteins by identification of unknown-genes.
Journal of Korea Society of Industrial Information Systems
/
v.16
no.2
/
pp.19-29
/
2011
Due to the development of web technologies and the increasing use of smart devices such as smart phone, in recent various web services are widely used in many application fields. In this environment, the topic of supporting personalized and intelligent web services have been actively researched, and an analysis technique on a web-click stream generated from web usage logs is one of the essential techniques related to the topic. In this paper, for efficient analyzing a web-click stream of sequences, a sequential pattern mining technique is proposed, which satisfies the basic requirements for data stream processing and finds a refined mining result. For this purpose, a concept of interesting sequential patterns with a time-interval constraint is defined, which uses not on1y the order of items in a sequential pattern but also their generation times. In addition, A mining method to find the interesting sequential patterns efficiently over a data stream such as a web-click stream is proposed. The proposed method can be effectively used to various computing application fields such as E-commerce, bio-informatics, and USN environments, which generate data as a form of data streams.
Test derivation methods suitable for interoperability testing of communication protocols were proposed in [1,2, 3] and applied to the TCP and the ATM protocols, The test cases that were generated by them deal with only the control part of the protocols. However, in real protocol testing, the test cases must manage the data part as well. For complete testing, in principle we must test all possible values of data part although it is impractical to do so. In this paper, we present a method generating the interoperability test suite for both the data part and the control part of protocols with the example of Tep connection establishment. In this process, we make use of experimental design techniques from industrial engineering to minimize the size of test suite while keeping testing capability. Experimental design techniques have been used for protocol confom1ance testing but not for intcruperability testing so far. We generate the test suite for data part by this method and show a possibility that we can test interoperability of protocols with the minimum number of test cases while maintaining the testing power.
Journal of the Korea Society of Computer and Information
/
v.16
no.11
/
pp.245-253
/
2011
Due to the imprudent spending of the fossil fuels, the environment was contaminated seriously and the exhaustion problems of the fossil fuels loomed large. Therefore people become taking a great interest in alternative energy resources which can solve problems of fossil fuels. The wind power energy is one of the most interested energy in the new and renewable energy. However, the plants of wind power energy and the traditional power plants should be balanced between the power generation and the power consumption. Therefore, we need analysis and prediction to generate power efficiently using wind energy. In this paper, we have performed a research to predict power generation patterns using the wind power data. Prediction approaches of datamining area can be used for building a prediction model. The research steps are as follows: 1) we performed preprocessing to handle the missing values and anomalous data. And we extracted the characteristic vector data. 2) The representative patterns were found by the MIA(Mean Index Adequacy) measure and the SOM(Self-Organizing Feature Map) clustering approach using the normalized dataset. We assigned the class labels to each data. 3) We built a new predicting model about the wind power generation with classification approach. In this experiment, we built a forecasting model to predict wind power generation patterns using the decision tree.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.3
/
pp.1451-1458
/
2013
This paper deals with the programs and algorithms that generate the full data set that satisfy the basic combinatorial requirement of combination, permutation, partial permutation or shortly r-permutation, which are used in the application of the total data testing or the simulation input. We search the programs able to meet the rules which is permutations and combinations, r-permutations, select the fastest program by field. With further study, we developed a new program reducing the time required to processing. Our research performs the following pre-study. Firstly, hundreds of algorithms and programs in the internet are collected and corrected to be executable. Secondly, we measure running time for all completed programs and select a few fast ones. Thirdly, the fast programs are analyzed in depth and its pseudo-code programs are provided. We succeeded in developing two programs that run faster. Firstly, the combination program can save the running time by removing recursive function and the r-permutation program become faster by combining the best combination program and the best permutation program. According to our performance test, the former and later program enhance the running speed by 22% to 34% and 62% to 226% respectively compared with the fastest collected program. The programs suggested in this study could apply to a particular cases easily based on Pseudo-code., Predicts the execution time spent on data processing, determine the validity of the processing, and also generates total data with minimum access programming.
We had developed in preceding study a classification model for the Korean pine and Larch with an accuracy of 98 percent using Hyperion and Sentinel-2 satellite images, texture information, and geometric information as the first step for tree species mapping in the inaccessible North Korea. Considering a share of major tree species in North Korea, the classification model needs to be expanded as it has a large share of Oak(29.5%), Pine (12.7%), Fir (8.2%), and as well as Larch (17.5%) and Korean pine (5.8%). In order to classify 5 major tree species, national forest type map of South Korea was used to build 11,039 training and 2,330 validation data. Sentinel-2 data was used to derive spectral information, and PlanetScope data was used to generate texture information. Geometric information was built from SRTM DEM data. As a machine learning algorithm, Random forest was used. As a result, the overall accuracy of classification was 80% with 0.80 kappa statistics. Based on the training data and the classification model constructed through this study, we will extend the application to Mt. Baekdu and North and South Goseong areas to confirm the applicability of tree species classification on the Korean Peninsula.
As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.
Kim, Yeong-A;Kim, Gea-Hee;Kim, Hyun-Ju;Kim, Chang-Geun
Journal of Convergence for Information Technology
/
v.9
no.1
/
pp.45-53
/
2019
We face problems from excessive information served with websites in this rapidly changing information era. We find little information useful and much useless and spend a lot of time to select information needed. Many websites including search engines use web crawling in order to make data updated. Web crawling is usually used to generate copies of all the pages of visited sites. Search engines index the pages for faster searching. With regard to data collection for wholesale and order information changing in realtime, the keyword-oriented web data collection is not adequate. The alternative for selective collection of web information in realtime has not been suggested. In this paper, we propose a method of collecting information of restricted web sites by using Web crawling distributed monitoring system (R-WCMS) and estimating collection time through detailed analysis of data and storing them in parallel system. Experimental results show that web site information retrieval is applied to the proposed model, reducing the time of 15-17%.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.1
/
pp.323-328
/
2019
In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.