• Title/Summary/Keyword: Generalized relative lower order

Search Result 7, Processing Time 0.027 seconds

GENERALIZED RELATIVE ORDER (α, β) BASED SOME GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.125-139
    • /
    • 2022
  • In this paper we wish to establish some results relating to the growths of composition of two entire functions with their corresponding left and right factors on the basis of their generalized relative order (α, β) and generalized relative lower order (α, β) where α and β are continuous non-negative functions defined on (-∞, +∞).

A NOTE ON THE INTEGRAL REPRESENTATIONS OF GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE AND MEROMORPHIC FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.355-376
    • /
    • 2021
  • In this paper we wish to establish the integral representations of generalized relative order (𝛼, 𝛽) and generalized relative type (𝛼, 𝛽) of entire and meromorphic functions where 𝛼 and 𝛽 are continuous non-negative functions defined on (-∞, +∞). We also investigate their equivalence relation under some certain condition.

GENERALIZED RELATIVE ORDER (α, β) ORIENTED SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Tanmay Biswas ;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • In this paper we wish to prove some results relating to the growth rates of composite entire and meromorphic functions with their corresponding left and right factors on the basis of their generalized relative order (α, β) and generalized relative lower order (α, β), where α and β are continuous non-negative functions defined on (-∞, +∞).

An Adaptive Time Delay Estimation Method Based on Canonical Correlation Analysis (정준형 상관 분석을 이용한 적응 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.548-555
    • /
    • 2013
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative delay between two or more received signals for the direct signal must be determined. Although the generalized cross-correlation method is the most popular technique, an approach based on eigenvalue decomposition (EVD) is also popular one, which utilizes an eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in the low SNR and the correlated environments, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) in order to extend the operation range to the lower SNR and the correlation environments. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue in the generalized eigenvalue decomposition (GEVD). The estimated eigenvector contains all the information that we need for time delay estimation. We have performed simulations with uncorrelated and correlated noise for several SNRs, showing that the CCA based algorithm can estimate the time delays more accurately than the adaptive EVD algorithm.