
Commun. Korean Math. Soc. 32 (2017), No. 3, pp. 619–635
https://doi.org/10.4134/CKMS.c160162
pISSN: 1225-1763 / eISSN: 2234-3024

GENERALIZED RELATIVE ORDER-DEPENDENT GROWTHS

OF COMPOSITE ENTIRE FUNCTIONS

Tanmay Biswas, Sanjib Kumar Datta, and Chinmay Ghosh

Abstract. In this paper we establish some newly developed results re-
lated to the growth rates of composite entire functions on the basis of
their generalized relative orders and generalized relative lower orders.

1. Introduction

A single valued function of one complex variable which is analytic in the finite
complex plane is called an integral (entire) function. For example exp z, sin z,
cos z etc. are examples of entire functions. In the value distribution theory
one studies how an entire function assumes some values and the influence of
assuming certain values in some specific manner on a function. In 1926 Rolf
Nevanlinna initiated the value distribution theory of entire functions. This
value distribution theory is a prominent branch of complex analysis and is the
prime concern of the paper. Perhaps the Fundamental Theorem of Classical
Algebra which states that “If f is a polynomial of degree n with real or complex
coefficients, then the equation f (z) = 0 has at least one root” is the most well
known value distribution theorem.

The value distribution theory deals with various aspects of the behavior of
entire functions one of which is the study of comparative growth properties.
For any entire function f , M (r, f), a function of r is defined as follows:

Mf (r) = max
|z|=r

|f (z) |.

Similarly for another entire function g, Mg (r) is defined. The ratio
Mf (r)
Mg(r)

as

r → ∞ is called the growth of f with respect to g in terms of their maximum
moduli.

An entire function f has an everywhere convergent power series expansion
as

f = a0 + a1z + a2z
2 + · · ·+ anz

n + · · ·
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The maximum term µf (r) of f can be defined in the following way:

µf (r) = max
n≥0

(|an|r
n) .

In fact µf (r) is much weaker than Mf (r) in some sense. So from another

angle of view
µ
f
(r)

µ
g
(r) as r → ∞ is also called the growth of f with respect to g

where µg (r) denotes the maximum term of entire g.

However, the order of an entire function f which is generally used in com-
putational purpose is defined in terms of the growth of f with respect to the
exp z function as

ρf = lim sup
r→∞

log logMf (r)

log logMexp z (r)
= lim sup

r→∞

log logMf (r)

log r
.

L. Bernal ([1], [2]) introduced the relative order between two entire functions
to avoid comparing growth just with exp z. Extending the notion of relative
order as cit.op. Lahiri and Banerjee [11] introduced the definition of generalized
relative order.

For entire functions, the notions of the growth indicators such as order is
classical in complex analysis and during the past decades, several researchers
have already been exploring their studies in the area of comparative growth
properties of composite entire functions in different directions using the clas-
sical growth indicators. But at that time, the concepts of relative orders and
consequently the generalized relative orders of entire functions and as well as
their technical advantages of not comparing with the growths of exp z are not at
all known to the researchers of this area. Therefore the studies of the growths
of composite entire functions in the light of their relative orders are the prime
concern of this paper. In fact some light has already been thrown on such
type of works by Datta et al. in [4], [5], [6], [7], [9], and [10]. Actually in this
paper we establish some newly developed results related to the growth rates
of composite entire functions on the basis of their generalized relative orders

(respectively generalized relative lower orders).

2. Notation and preliminary remarks

Our notations are standard within the theory of Nevanlinna’s value distri-
bution of entire functions and therefore we do not explain those in detail as
available in [16]. In the sequel the following two notations are used:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, . . . ;

log[0] x = x

and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1, 2, 3, . . . ;

exp[0] x = x.
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Taking this into account the order (respectively, lower order) of an entire
function f is given by

ρf = lim sup
r→∞

log[2] Mf (r)

log r

(

respectively λf =
log[2] Mf (r)

log r

)

.

Let us recall that Sato [12] defined the generalized order and generalized

lower order of an entire function f , respectively, as follows:

ρ
[l]
f = lim sup

r→∞

log[l] Mf (r)

log r

(

respectively λ
[l]
f = lim inf

r→∞

log[l] Mf (r)

log r

)

,

where l is any positive integer. These definitions extended the order ρf and
lower order λf of an entire function f since these correspond to the particular

case ρ
[2]
f = ρf and λ

[2]
f = λf .

Since for 0 ≤ r < R,

µf (r) ≤ Mf (r) ≤
R

R− r
µf (R) (cf. [14])

it is easy to see that

ρf = lim sup
r→∞

log[2] µf (r)

log r

(

respectively λf = lim inf
r→∞

log[2] µf (r)

log r

)

and

ρ
[l]
f = lim sup

r→∞

log[l] µf (r)

log r

(

respectively λ
[l]
f = lim inf

r→∞

log[l] µf (r)

log r

)

.

Given a non-constant entire function f defined in the open complex plane
C, its maximum modulus function Mf is strictly increasing and continuous.

Hence there exists its inverse function M−1
f : (|f (0)| ,∞) → (0,∞) with

lim
s→∞

M−1
f (s) = ∞.

Then Bernal ([1], [2]) introduced the definition of relative order of f with
respect to g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

This definition coincides with the classical one [15] if g = exp z. Similarly,
one can define the relative lower order of f with respect to g denoted by λg (f)
as

λg (f) = lim inf
r→∞

logM−1
g Mf (r)

log r
.

In the case of relative order, it therefore seems reasonable to state suitably an
alternative definition of relative order of entire function in terms of its maximum
terms. Datta and Maji [10] introduced such a definition in the following way:
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Definition 1 ([10]). The relative order ρg (f) and the relative lower order
λg (f) of an entire function f with respect to another entire function g are
defined as follows:

ρg (f) = lim sup
r→∞

logµ−1
g µf (r)

log r
and λg (f) = lim inf

r→∞

logµ−1
g µf (r)

log r
.

Lahiri and Banerjee [11] gave a more generalized concept of relative order
in the following way:

Definition 2 ([11]). If l ≥ 1 is a positive integer, then the l-th generalized

relative order of f with respect to g, denoted by ρ
[l]
g (f) is defined by

ρ[l]g (f) = inf
{

µ > 0 : Mf (r) < Mg

(

exp[l−1] rµ
)

for all r > r0 (µ) > 0
}

= lim sup
r→∞

log[l] M−1
g Mf (r)

log r
.

Clearly ρ1g (f) = ρg (f) and ρ1exp z (f) = ρf .
Likewise one can define the generalized relative lower order of f with respect

to g denoted by λ[l]
g (f) as

λ[l]
g (f) = lim inf

r→∞

log[l] M−1
g Mf (r)

log r
.

In terms of maximum terms of entire functions, Definition 2 can be refor-
mulated as:

Definition 3. For any positive integer l ≥ 1, the growth indicators ρ
[l]
g (f) and

λ[l]
g (f) of an entire function f are defined as:

ρ[l]g (f) = lim sup
r→∞

log[l] µ−1
g µf (r)

log r
and λ[l]

g (f) = lim inf
r→∞

log[l] µ−1
g µf (r)

log r
.

In fact, the equivalence of Definition 2 and Definition 3 has been established
in [8].

3. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([3]). If f and g are any two entire functions, then for all sufficiently

large values of r,

Mf

(

1

8
Mg

(r

2

)

− |g (0)|

)

≤ Mf◦g(r) ≤ Mf (Mg (r)) .

Lemma 2 ([13]). Let f and g be any two entire functions. Then for every

α > 1 and 0 < r < R,

µf◦g (r) ≤
α

α− 1
µf

(

αR

R− r
µg (R)

)

.
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Lemma 3 ([13]). If f and g are any two entire functions with g (0) = 0, then
for all sufficiently large values of r,

µf◦g(r) ≥
1

2
µf

(

1

8
µg

(r

4

)

− |g (0)|

)

.

Lemma 4 ([2]). Suppose f is an entire function and α > 1, 0 < β < α. Then

for all sufficiently large r,

Mf (αr) ≥ βMf (r).

Lemma 5 ([10]). If f be an entire and α > 1, 0 < β < α, then for all

sufficiently large r,

µf (αr) ≥ βµf (r).

4. Main results

In this section we present the main results of the paper.

Theorem 1. Let f and h be any two entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ and g be an entire function with λ[q]

g > 0 where p, q are any

integers with p > 1 and q > 2. Then for every positive constant δ and every

real number α,

lim
r→∞

log[p] M−1
h Mf◦g (r)

[

log[p] M−1
h Mf

(

{

exp[q−2] r
}δ
)]1+α

= ∞.

Proof. If α be such that 1 + α ≤ 0, then the theorem is trivial. So we suppose
that 1 + α > 0. Since M−1

h (r) is an increasing function of r, it follows from
the first part of Lemma 1 for all sufficiently large values of r that

log[p] M−1
h Mf◦g (r) ≥

(

λ
[p]
h (f)− ε

) 1

16
+
(

λ
[p]
h (f)− ε

)

logMg

( r

2

)

i.e., log[p] M−1
h Mf◦g (r) ≥

(

λ
[p]
h (f)− ε

) 1

16

+
(

λ
[p]
h (f)− ε

)

exp[q−2]
(r

2

)λ[q]
g

−ε

,(1)

where we choose ε in such a way that 0 < ε < min(λ
[p]
h (f) , λ[q]

g ).

Again from the definition of ρ
[p]
h (f) , it follows for all sufficiently large values

of r that

(2)

[

log[p] M−1
h Mf

(

{

exp[q−2] r
}δ
)]1+α

≤
(

ρ
[p]
h (f) + ε

)1+α

δ1+α
(

exp[q−3] r
)1+α

.



624 T. BISWAS, S. K. DATTA, AND C. GHOSH

Now from (1) and (2) , it follows for all sufficiently large values of r that

log[p] M−1
h Mf◦g (r)

[

log[p] M−1
h Mf

(

{

exp[q−2] r
}δ
)]1+α

>

(

λ
[p]
h (f)− ε

)

1
16 +

(

λ
[p]
h (f)− ε

)

exp[q−2]
(

r
2

)λ[q]
g

−ε

(

ρ
[p]
h (f) + ε

)1+α

δ1+α
(

exp[q−3] r
)1+α

.

Since
exp[q−2]( r

2 )
λ
[q]
g −ε

(exp[q−3] r)
1+α → ∞ as r → ∞, the theorem follows from above. �

In the line of Theorem 1, one may state the following theorem without its
proof:

Theorem 2. Let f, g, h and k be any four entire functions with λ
[p]
h (f) >

0,λ[q]
g > 0 and ρ

[m]
k (g) < ∞ where p, q,m are any integers with p > 1, q > 2

and m > 1. Then for every positive constant δ and every real number α,

lim
r→∞

log[p] M−1
h Mf◦g (r)

[

log[m] M−1
k Mg

(

{

exp[q−2] r
}δ
)]1+α

= ∞.

In the line of Theorem 1 and Theorem 2, the following two theorems can be
proved by using Lemma 3 and Definition 3 and hence their proofs are omitted.

Theorem 3. Let f and h be any two entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ and g be an entire function with λ[q]

g > 0 where p, q are any two

integers with p > 1 and q > 2. Then for every positive constant δ and every

real number α,

lim
r→∞

log[p] µ−1
h µf◦g (r)

[

log[p] µ−1
h µf

(

{

exp[q−2] r
}δ
)]1+α

= ∞.

Theorem 4. Let f, g, h and k be any four entire functions with λ
[p]
h (f) >

0,λ[q]
g > 0 and ρ

[m]
k (g) < ∞ where p, q,m are any integers with p > 1, q > 2

and m > 1. Then for every positive constant δ and every real number α,

lim
r→∞

log[p] µ−1
h µf◦g (r)

[

log[m] µ−1
k µg

(

{

exp[q−2] r
}δ
)]1+α

= ∞.

Remark 1. Theorem 1 and Theorem 3 are still valid with “limit superior”

instead of “limit” if we replace the condition “0 < λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞” by

“0 < λ
[p]
h (f) < ∞”.
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Remark 2. In Theorem 2 and Theorem 4 if we take the condition λ
[m]
k (g) < ∞

instead of ρ
[m]
k (g) < ∞, then also Theorem 2 and Theorem 4 remain true with

“limit superior” in place of “limit”.

Theorem 5. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and ρ

[q]
g < ∞ where p, q are any integers with p > 1 and

q > 2. Then for every positive constant δ and each α ∈ (−∞,∞) ,

lim
r→∞

{

log[p] M−1
h Mf◦g (r)

}1+α

log[p] M−1
h Mf (exp[q−1] rδ)

= 0 if δ > (1 + α)ρ[q]g .

Proof. If 1 + α ≤ 0, then the theorem is obvious. We consider 1 + α > 0.
Since M−1

h (r) is an increasing function of r, it follows from the second part of
Lemma 1 for all sufficiently large values of r that

log[p] M−1
h Mf◦g (r) ≤

(

ρ
[p]
h (f) + ε

)

logMg (r)

i.e., log[p] M−1
h Mf◦g (r) ≤

(

ρ
[p]
h (f) + ε

)

exp[q−2] rρ
[q]
g

+ε.(3)

Again from the definition of generalized relative lower order, we get for all
sufficiently large values of r that

(4) log[p] M−1
h Mf (exp

[q−1] rδ) ≥
(

λ
[p]
h (f)− ε

)

exp[q−2] rδ.

Therefore for all sufficiently large values of r we get from (3) and (4) that

(5)

{

log[p] M−1
h Mf◦g (r)

}1+α

log[p] M−1
h Mf (exp[q−1] rµ)

≤

(

ρ
[p]
h (f) + ε

)1+α

· exp[q−2] r(ρ
[q]
g

+ε)(1+α)

(

λ
[p]
h (f)− ε

)

exp[q−2] rδ
,

where we choose 0 < ε < min
{

λ
[p]
h (f) , δ

1+α
− ρ

[q]
g

}

. So from (5) we obtain

that

lim
r→∞

{

log[p] M−1
h Mf◦g (r)

}1+α

log[p] M−1
h Mf(exp[q−1] rδ)

= 0.

This proves the theorem. �

In view of Theorem 5 the following theorem can be carried out.

Theorem 6. Let f, g, h and k be any three entire functions with ρ
[p]
h (f) < ∞,

ρ
[q]
g < ∞ and λ

[m]
k (g) > 0 where p, q,m are any three integers with p > 1, q > 2

and m > 1. Then for every positive constant δ and each α ∈ (−∞,∞) ,

lim
r→∞

{

log[p] M−1
h Mf◦g (r)

}1+α

log[m] M−1
k Mg(exp[q−1] rδ)

= 0 if δ > (1 + α)ρ[q]g .

The proof is omitted.
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Theorem 7. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and ρ

[q]
g < ∞ where p, q are any integers with p > 1 and

q > 2. Then for every positive constant δ and each α ∈ (−∞,∞) ,

lim
r→∞

{

log[p] µ−1
h µf◦g (r)

}1+α

log[p] µ−1
h µf (exp

[q−1] rδ)
= 0 if δ > (1 + α)ρ[q]g .

Theorem 8. Let f, g, h and k be any three entire functions with ρ
[p]
h (f) < ∞,

ρ
[q]
g < ∞ and λ

[m]
k (g) > 0 where p, q,m are any integers with p > 1, q > 2 and

m > 1. Then for every positive constant δ and each α ∈ (−∞,∞) ,

lim
r→∞

{

log[p] µ−1
h µf◦g (r)

}1+α

log[m] µ−1
k µg(exp

[q−1] rδ)
= 0 if δ > (1 + α)ρ[q]g .

We omit the proof of Theorem 7 and Theorem 8 because those can be carried
out in the line of Theorem 5 and Theorem 6 respectively and with the help of
Lemma 2, Lemma 5 and Definition 3.

Remark 3. In Theorem 5 and Theorem 7 if we take the condition 0 < ρ
[p]
h (f) <

∞ instead of 0 < λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞, then also Theorem 5 and Theorem 7

remain true with “limit inferior” in place of “limit”.

Remark 4. In Theorem 6 and Theorem 8 if we take the condition ρ
[m]
k (g) > 0

instead of λ
[m]
k (g) > 0, the theorem remains true with “limit” replaced by

“limit inferior”.

Theorem 9. Let f, g and h be any three entire functions such that ρ
[p]
h (f) < ∞

and λ
[p]
h (f ◦ g) = ∞ where p is any integer > 1. Then for every A (> 0) ,

lim
r→∞

log[p] M−1
h Mf◦g (r)

log[p] M−1
h Mf (rA)

= ∞.

Proof. If possible, let there exist a constant β such that for a sequence of values
of r tending to infinity,

(6) log[p] M−1
h Mf◦g (r) ≤ β · log[p] M−1

h Mf

(

rA
)

.

Again from the definition of ρ
[p]
h (f) , it follows for all sufficiently large values

of r that

(7) log[p] M−1
h Mf

(

rA
)

≤
(

ρ
[p]
h (f) + ε

)

·A · log r.

Now from (6) and (7), we get for a sequence of values of r tending to infinity
that

log[p] M−1
h Mf◦g (r) ≤ β ·

(

ρ
[p]
h (f) + ε

)

· A · log r

i.e., λ
[p]
h (f ◦ g) ≤ β · A

(

ρ
[p]
h (f) + ε

)

,
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which contradicts the condition λ
[p]
h (f ◦ g) = ∞.

So for all sufficiently large values of r we get that

log[p] M−1
h Mf◦g (r) ≥ β · log[p] M−1

h Mf

(

rA
)

,

from which the theorem follows. �

In the line of Theorem 9 the following theorem can also be proved:

Theorem 10. Let f, g and h be any three entire functions such that ρ
[p]
h (f) <

∞ and λ
[p]
h (f ◦ g) = ∞ where p is any integer > 1. Then for every A (> 0) ,

lim
r→∞

log[p] µ−1
h µf◦g (r)

log[p] µ−1
h µf (r

A)
= ∞.

Remark 5. Theorem 9 and Theorem 10 are also valid with “limit superior”

instead of “limit” if λ
[p]
h (f ◦ g) = ∞ is replaced by ρ

[p]
h (f ◦ g) = ∞ and the

other conditions remain the same.

Corollary 1. Under the assumptions of Theorem 9 and Theorem 10,

lim
r→∞

M−1
h Mf◦g (r)

M−1
h Mf (rA)

= ∞ and lim
r→∞

µ−1
h µf◦g (r)

µ−1
h µf (r

A)
= ∞

respectively hold.

Proof. By Theorem 9 we obtain for all sufficiently large values of r and for
K > 1,

log[p] M−1
h Mf◦g (r) ≥ K log[p] M−1

h Mf

(

rA
)

i.e., log[p−1] M−1
h Mf◦g (r) ≥

{

log[p−1] M−1
h Mf

(

rA
)

}K

,

from which the first part of the corollary follows.
Similarly using Theorem 10, we obtain the second part of the corollary. �

Corollary 2. Under the assumptions of Remark 5,

lim sup
r→∞

M−1
h Mf◦g (r)

M−1
h Mf (rA)

= ∞ and lim sup
r→∞

µ−1
h µf◦g (r)

µ−1
h µf (r

A)
= ∞

respectively hold.

The proof is omitted.
Analogously one may also state the following theorems and corollaries with-

out their proofs as those may be carried out in the line of Remark 5, Theorem
9,Theorem 10, Corollary 1 and Corollary 2 respectively.

Theorem 11. If f, g and k be any three entire functions such that ρ
[m]
k (g) < ∞

and ρ
[m]
k (f ◦ g) = ∞ where m is any integer > 1. Then for every B (> 0) ,

lim sup
r→∞

log[m]M−1
k Mf◦g (r)

log[m] M−1
k Mg (rB)

= ∞.
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Theorem 12. If f, g and k be any three entire functions such that ρ
[m]
k (g) < ∞

and ρ
[m]
k (f ◦ g) = ∞ where m is any integer > 1. Then for every B (> 0) ,

lim sup
r→∞

log[m] µ−1
k µf◦g (r)

log[m] µ−1
k µg (r

B)
= ∞.

Corollary 3. Theorem 11 and Theorem 12 are also valid with “limit” instead

of “limit superior” if ρ
[m]
k (f ◦ g) = ∞ is replaced by λ

[m]
k (f ◦ g) = ∞ and the

other conditions remain the same.

Corollary 4. Under the assumptions of Theorem 11 and Theorem 12,

lim sup
r→∞

M−1
k Mf◦g (r)

M−1
k Mg (rB)

= ∞ and lim sup
r→∞

µ−1
k µf◦g (r)

µ−1
k µg (r

B)
= ∞

respectively hold.

Corollary 5. Under the assumptions of Corollary 3,

lim
r→∞

M−1
k Mf◦g (r)

M−1
k Mg (rB)

= ∞ and lim
r→∞

µ−1
k µf◦g (r)

µ−1
k µg (r

B)
= ∞

respectively hold.

Theorem 13. Let f and h be any two entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ for any integer p > 1. Also suppose g be an entire function with

0 < δ < ρ
[q]
g ≤ ∞ where q is any integer > 2. Then for a sequence of values of

r tending to infinity,

M−1
h Mf◦g (r) > M−1

h Mf(exp
[q−1] rδ).

Proof. As M−1
h (r) is an increasing function of r, in view of Lemma 1 we get

for a sequence of values of r tending to infinity that
(8)

log[p] M−1
h Mf◦g (r) ≥

(

λ
[p]
h (f)− ε

) 1

16
+
(

λ
[p]
h (f)− ε

)

exp[q−2]
( r

2

)ρ[q]
g

−ε

.

Again from the definition of ρ
[p]
h (f) , we obtain for all sufficiently large values

of r that

(9) log[p] M−1
h Mf (exp

[q−1] rδ) ≤
(

ρ
[p]
h (f) + ε

)

· exp[q−2] rδ.

Now from (8) and (9) , it follows for a sequence of values of r tending to infinity
that

(10)
log[p] M

−1

h
Mf◦g(r)

log[p] M
−1

h
Mf (exp[q−1] rδ)

≥

(

λ
[p]

h
(f)−ε

)

1
16

+
(

λ
[p]

h
(f)−ε

)

exp[q−2]( r

2 )
ρ
[q]
g −ε

(

ρ
[p]

h
(f)+ε

)

·exp[q−2] rδ
.

As δ < ρ
[q]
g we can choose ε(> 0) in such a way that

(11) δ < ρ[q]g − ε.
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Thus, from (10) and (11), we get that

(12) lim sup
r→∞

log[p] M−1
h Mf◦g (r)

log[p] M−1
h Mf(exp[q−1] rδ)

= ∞.

From (12) , we obtain for a sequence of values of r tending to infinity and K > 1
that

M−1
h Mf◦g (r) > M−1

h Mf(exp
[q−1] rδ).

This proves the theorem. �

Theorem 14. Let f and h be any two entire functions with 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ for any integer p > 1. Also suppose g and k be any two entire

functions such that ρ
[m]
k (g) < ∞ and 0 < δ < ρ

[q]
g where q,m are integers with

q > 1 and m > 2. Then for a sequence of values of r tending to infinity,

log[p−1]
M−1

h Mf◦g (r) > log[m−1]
M−1

k Mg(exp
[q−1] rδ).

Proof. Let 0 < δ < δ0 < ρ
[q]
g . Then in view of Theorem 13, for a sequence of

values of r tending to infinity, we get that

(13) log[p] M−1
h Mf◦g (r) >

(

λ
[p]
h (f)− ε

)

exp[q−2] rδ0 .

Again from the definition of ρ
[m]
k (g) , we obtain for all sufficiently large values

of r that

(14) log[m] M−1
k Mg(exp

[q−1] rδ) ≤
(

ρ
[m]
k (g) + ε

)

exp[q−2] rδ.

So combining (13) and (14) , we obtain for a sequence of values of r tending to
infinity that

(15)
log[p] M−1

h Mf◦g (r)

log[m] M−1
k Mg(exp[q−1] rµ)

>

(

λ
[p]
h (f)− ε

)

exp[q−2] rδ0

(

ρ
[m]
k (g) + ε

)

exp[q−2] rδ
.

Since δ0 > δ, from (15) , it follows that

(16) lim sup
r→∞

log[p] M−1
h Mf◦g (r)

log[m]M−1
k Mg(exp[q−1] rδ)

= ∞.

Thus the theorem follows from (16) . �

In the line of Theorem 13 and Theorem 14, the following two theorems can
be proved by using Lemma 3 and Definition 3 and therefore their proofs are
omitted.

Theorem 15. Let f and h be any two entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ for any integer p > 1. Also suppose g be an entire function with
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0 < δ < ρ
[q]
g ≤ ∞ where q is any integer > 2. Then for a sequence of values of

r tending to infinity,

µ−1
h µf◦g (r) > µ−1

h µf (exp
[q−1] rδ).

Theorem 16. Let f and h be any two entire functions with 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ for any integer p > 1. Also suppose g and k be any two entire

functions such that ρ
[m]
k (g) < ∞ and 0 < δ < ρ

[q]
g where q,m are integers with

q > 1 and m > 2. Then for a sequence of values of r tending to infinity,

log[p−1] µ−1
h µf◦g (r) > log[m−1] µ−1

k µg(exp
[q−1] rδ).

Theorem 17. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and λ[q]

g < δ < ∞ where p, q are any integers with p > 1
and q > 2. Then for a sequence of values of r tending to infinity,

M−1
h Mf◦g (r) < M−1

h Mf(exp
[q−1] rδ).

Proof. Since M−1
h (r) is an increasing function of r, it follows from the second

part of Lemma 1 for a sequence of values of r tending to infinity that

(17) log[p] M−1
h Mf◦g (r) ≤

(

ρ
[p]
h (f) + ε

)

exp[q−2] rλ
[q]
g

+ε.

Now, from (4) and (17) , it follows for a sequence of values of r tending to
infinity that

(18)
log[p] M−1

h Mf (exp
[q−1] rδ)

log[p] M−1
h Mf◦g (r)

≥

(

λ
[p]
h (f)− ε

)

exp[q−2] rδ

(

ρ
[p]
h (f) + ε

)

exp[q−2] rλ
[q]
g +ε

.

As λ[q]
g < δ we can choose ε (> 0) in such a way that

(19) λ
[q]
g + ε < δ < ρ[q]g .

Thus, from (18) and (19) , we obtain that

(20) lim sup
r→∞

log[p] M−1
h Mf(exp

[q−1] rδ)

log[p] M−1
h Mf◦g (r)

= ∞.

From (20) , we obtain for a sequence of values of r tending to infinity and also
for K > 1

M−1
h Mf (exp

[q−1] rδ) > M−1
h Mf◦g (r) .

Thus the theorem follows. �

In the line of Theorem 17, we may state the following theorem without its
proof:
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Theorem 18. Let f, g, h and k be any four entire functions with λ
[m]
k (g) > 0

and ρ
[p]
h (f) < ∞ where p,m are any integers with p > 1 and q > 1. Also

suppose that λ
[q]
g < δ < ∞ where q is any integer > 2, then for a sequence of

values of r tending to infinity,

log[p−1]
M−1

h Mf◦g (r) < log[m−1]
M−1

k Mg(exp
[q−1] rδ).

In the line of Theorem 17 and Theorem 18 the following two theorems can
also be proved:

Theorem 19. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and λ[q]

g < δ < ∞ where p, q are any integers with p > 1
and q > 2. Then for a sequence of values of r tending to infinity,

µ−1
h µf◦g (r) < µ−1

h µf (exp
[q−1] rδ).

Theorem 20. Let f, g, h and k be any four entire functions with λ
[m]
k (g) > 0

and ρ
[p]
h (f) < ∞ where p,m are any integers with p > 1 and q > 1. Also

suppose that λ[q]
g < δ < ∞ where q is any integer > 2. Then for a sequence of

values of r tending to infinity,

log[p−1] µ−1
h µf◦g (r) < log[m−1] µ−1

k µg(exp
[q−1] rδ).

As an application of Theorem 13 and Theorem 17, we may state the following
theorem:

Theorem 21. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and λ[q]

g < δ < ρ
[q]
g where p, q are any integers with

p > 1 and q > 2. Then

lim inf
r→∞

M−1
h Mf◦g (r)

M−1
h Mf (exp[q−1] rδ)

≤ 1 ≤ lim sup
r→∞

M−1
h Mf◦g (r)

M−1
h Mf (exp[q−1] rδ)

.

The proof is omitted.
In view of Theorem 14 and Theorem 18, the following theorem can be carried

out:

Theorem 22. Let f, g, h and k be any four entire functions with 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞, 0 < λ

[m]
k (g) ≤ ρ

[m]
k (g) < ∞ and 0 < λ[m]

g < δ < ρ
[m]
g < ∞ where

p, q,m are any three integers with p > 1, q > 2 and m > 1. Then

lim inf
r→∞

log[p−1] M
−1

h
Mf◦g(r)

log[m−1] M
−1

k
Mg(exp[q−1] rδ)

≤ 1 ≤ lim sup
r→∞

log[p−1] M
−1

h
Mf◦g(r)

log[m−1] M
−1

k
Mg(exp[q−1] rδ)

.

Analogously one may also state the following two theorems without their
proofs as those may be carried out in the line of Theorem 15, Theorem 19 and
Theorem 16, Theorem 20 respectively.
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Theorem 23. Let f, g and h be any three entire functions such that 0 <

λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ and λ[q]

g < δ < ρ
[q]
g where p, q are any integers with

p > 1 and q > 2. Then

lim inf
r→∞

µ−1
h µf◦g (r)

µ−1
h µf (exp

[q−1] rδ)
≤ 1 ≤ lim sup

r→∞

µ−1
h µf◦g (r)

µ−1
h µf (exp

[q−1] rδ)
.

Theorem 24. Let f, g, h and k be any four entire functions with 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞, 0 < λ

[m]
k (g) ≤ ρ

[m]
k (g) < ∞ and 0 < λ[m]

g < δ < ρ
[m]
g < ∞ where

p, q,m are any integers with p > 1, q > 2 and m > 1. Then

lim inf
r→∞

log[p−1]
µ−1
h µf◦g (r)

log[m−1] µ−1
k µg(exp

[q−1] rδ)
≤ 1 ≤ lim sup

r→∞

log[p−1]
µ−1
h µf◦g (r)

log[m−1] µ−1
k µg(exp

[q−1] rδ)
.

Theorem 25. Let f, g, h, k, l and b be any six entire functions such that λ
[m]
b (l)

> 0, ρ
[p]
h (f) < ∞ and ρ

[q]
g < λ

[n]
k where p, q,m, n are all positive integers with

p ≥ 1, m ≥ 1 and n ≥ q ≥ 2. Then

(i) lim
r→∞

M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

= ∞ if p = m

(ii) lim
r→∞

M−1
b Ml◦k (r)

log[p−m] M−1
h Mf◦g (r)

= ∞ if p > m

and

(iii) lim
r→∞

log[m−p]M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

= ∞ if p < m.

Proof. Since M−1
b (r) is an increasing function of r, it follows from Lemma 1

for all sufficiently large values of r that

log[m] M−1
b Ml◦k (r) ≥

(

λ
[m]
b (l)− ε

) 1

16
+
(

λ
[m]
b (l)− ε

)

logMk

( r

2

)

i.e., log[m] M−1
b Ml◦k (r) ≥

(

λ
[m]
b (l)− ε

) 1

16

+
(

λ
[m]
b (l)− ε

)

exp[n−2]
(r

2

)λ
[n]

k
−ε

.(21)

Since ρ
[q]
g < λ

[n]
k , we can choose ε (> 0) in such a manner that

(22) ρ[q]g + ε < λ
[n]
k − ε.

Case I. Let p = m.

Therefore combining (3) and (21) and in view of (22) we get for all sufficiently
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large values of r that

M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

>

exp[m]

[

(

λ
[m]
b (l)− ε

)

1
16 +

(

λ
[m]
b (l)− ε

)

exp[n−2]
(

r
2

)λ
[n]

k
−ε

]

exp[m]
[(

ρ
[p]
h (f) + ε

)

exp[q−2] rρ
[q]
g +ε

]

i.e., lim
r→∞

M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

= ∞.

Thus the first part of the theorem follows from above.
Case II. Let p > m.

Now combining (3) and (21) and in view of (22) , we obtain for all sufficiently
large values of r that

M−1
b Ml◦k (r)

log[p−m] M−1
h Mf◦g (r)

>

exp[m]

[

(

λ
[m]
b (l)− ε

)

1
16 +

(

λ
[m]
b (l)− ε

)

exp[n−2]
(

r
2

)λ
[n]

k
−ε

]

exp[m]
[(

ρ
[p]
h (f) + ε

)

exp[q−2] rρ
[q]
g +ε

]

i.e., lim
r→∞

M−1
b Ml◦k (r)

log[p−m]
M−1

h Mf◦g (r)
= ∞,

which is the second part of the theorem.
Case III. Let p < m.

Now combining (3) and (21) and in view of (22) , we obtain for all sufficiently
large values of r that

log[m−p] M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

>

exp[p]
[

(

λ
[m]
b (l)− ε

)

1
16 +

(

λ
[m]
b (l)− ε

)

exp[n−2]
(

r
2

)λ
[n]

k
−ε

]

exp[p]
[(

ρ
[p]
h (f) + ε

)

exp[q−2] rρ
[q]
g +ε

]

i.e., lim
r→∞

log[m−p]M−1
b Ml◦k (r)

M−1
h Mf◦g (r)

= ∞,

Thus the third part of the theorem is established.
Thus the theorem follows. �

Theorem 26. Let f, g, h, k, l and b be any six entire functions such that λ
[m]
b (l)

> 0, ρ
[p]
h (f) < ∞ and ρ

[q]
g < λ

[n]
k where p, q,m, n are all positive integers with

p ≥ 1, m ≥ 1 and n ≥ q ≥ 2. Then

(i) lim
r→∞

µ−1
b µl◦k (r)

µ−1
h µf◦g (r)

= ∞ if p = m
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(ii) lim
r→∞

µ−1
b µl◦k (r)

log[p−m] µ−1
h µf◦g (r)

= ∞ if p > m

and

(iii) lim
r→∞

log[m−p] µ−1
b µl◦k (r)

µ−1
h µf◦g (r)

= ∞ if p < m .

We omit the proof of Theorem 26 because it can be carried out in the line
of Theorem 25 and with the help of Lemma 2, Lemma 3 and Lemma 5.

Remark 6. If we consider ρ
[q]
g < ρ

[n]
k instead of ρ

[q]
g < λ

[n]
k in Theorem 25

and Theorem 26 and the other conditions remain the same, the conclusion of
Theorem 25 and Theorem 26 remain valid with “limit superior” replaced by
“limit”.
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