• 제목/요약/키워드: Generalized Kac-Moody Lie algebras

검색결과 4건 처리시간 0.018초

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

  • Kim, Wansoon
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.195-201
    • /
    • 1992
  • Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

  • PDF

A NOTE ON THE INTEGRAL POINTS ON SOME HYPERBOLAS

  • Ko, Hansaem;Kim, Yeonok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권3호
    • /
    • pp.137-148
    • /
    • 2013
  • In this paper, we study the Lie-generalized Fibonacci sequence and the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We derive several interesting properties of the Lie-Fibonacci sequence and relationship between them. We also give a couple of sufficient conditions for the existence of the integral points on the hyperbola $\mathfrak{h}^a:x^2-axy+y^2=1$ and $\mathfrak{h}_k:x^2-axy+y^2=-k$ ($k{\in}\mathbb{Z}_{>0}$). To list all the integral points on that hyperbola, we find the number of elements of ${\Omega}_k$.

ON THE NILPOTENCY OF CERTAIN SUBALGEBRAS OF KAC-MOODY ALGEBRAS OF TYPE AN(r)

  • Kim, Yeon-Ok;Min, Seung-Kenu
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.439-447
    • /
    • 2003
  • Let (equation omitted) be a symmetrizable Kac-Moody algebra with the indecomposable generalized Cartan matrix A and W be its Weyl group. Let $\theta$ be the highest root of the corresponding finite dimensional simple Lie algebra ${\gg}$ of g. For the type ${A_N}^{(r)}$, we give an element $\omega_{o}\;\in\;W$ such that ${{\omega}_o}^{-1}({\{\Delta\Delta}_{+}})\;=\;{\{\Delta\Delta}_{-}}$. And then we prove that the degree of nilpotency of the subalgebra (equation omitted) is greater than or equal to $ht{\theta}+1$.