SOME MODULES IN CATEGORY \mathcal{O} AND THEIR DECOMPOSITION OVER GENERALIZED KAC-MOODY LIE ALGEBRAS

Wansoon Kim

ABSTRACT. We extend the notion of equivalence relation \approx for Kac-Moody algebras to generalized Kac-Moody algebras and prove some analogues of results for Kac-Moody algebras.

1. Introduction

In this paper we extend the notion of equivalence relation \sim for Kac-Moody algebras to generalized Kac-Moody algebras (= GKM algebras) and prove some analogues of results for Kac-Moody algebras. Here, GKM algebras are a class of contragredient Lie algebras G(A) over C associated to a real square matrix $A = (a_{ij})_{i,j,\in I}$ indexed by a finite set I which satisfies the conditions:

- (C1) either $a_{ii} = 2$ or $a_{ii} \leq 0$;
- (C2) $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} \in Z$ if $a_{ii} = 2$;
- (C3) $a_{ij} = 0$ implies $a_{ji} = 0$.

We also extend the equivalence relation \approx (defined in [2]) from K^g to a larger subset $K^g \subset H^*$ (we use same notation K^g), for GKM algebras. We prove the equivalence classes in K^g for GKM algebras have a property similar to that of the equivalence classes for Kac-Moody algebras. We also prove that their category decomposition theorem for \mathcal{O}^g can be extended.

Received May 16, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 17B10, 17B65.

Key words and phrases: Generalized Kac-Moody Lie algebras, Verma modules, category \mathcal{O} .

This paper was partially supported by KOSEF-RCAA, 1996.

2. Decomposition Theorem of Modules in the category \mathcal{O}

Let H be a Cartan subalgebra of G, Π the set of simple roots $\{\alpha_i, i \in I\}$. Let W be the Weyl group. Fix an element ρ in H^* such that $(\rho, \alpha_i) = \frac{1}{2}(\alpha_i, \alpha_i)$. Here, $(\ ,\)$ is a nondegenerate bilinear form on H^* . We denote by P_+ the set of dominant integrals. Let $I^{re}(\text{resp. }I^{im})$ be the subset $\{i \in I | a_{ii} = 2 \text{ (resp. } a_{ii} \leq 0 \text{ }\} \text{ of the indexing set } I$. For $\alpha_i \in \Pi$ we call α_i real(resp. imaginary) simple root when $i \in I^{re}(\text{resp. }I^{im})$.

First, we recall the definition of the category \mathcal{O} whose objects are G modules M satisfying:

- (1) M is H-semisimple with finite dimensional weight spaces.
- (2) There exist finitely many elements $\mu_1, \mu_2, \cdots, \mu_k \in H^*$ such that any weight of M (μ is a weight iff $M_{\mu} \neq 0$) belongs to some $D(\mu_i)$, where $D_{\mu_i} = \{\mu_i \gamma | \gamma \in Q_+ = \sum Z_{\geq 0} \alpha_i \}$.

An important class of modules in \mathcal{O} is the class of highest modules, in particular Verma modules.

For $\mu \in H^*$, any $M \in \mathcal{O}$ has a local composition series at μ whose subquotients are irreducible highest weight modules. We call these subquotients components of M. The following Proposition describes the components of Verma modules.

PROPOSITION 2.1. [2, Theorem 3.6] Let $\lambda, \mu \in H^*$. Then $L(\mu)$ is a component of $M(\lambda)$ iff the ordered pair $\{\lambda, \mu\}$ has the following condition:

- (*) There exist a sequence $\phi_1, \phi_2, ..., \phi_k$ of positive roots and a sequence $n_1, n_2, ..., n_k$ of positive integers such that
 - (i) $\lambda \mu = \sum_{i=1}^{i=k} n_i \phi_i$,
 - (ii) $2(\lambda + \rho n_1 \phi_1 \dots n_{j-1} \phi_{j-1}, \phi_j) = n_j(\phi_j, \phi_j), \quad \forall \ 1 \le i \le k.$

Now fix $\lambda \in H^*$. Define $\mathcal{A}(\lambda)$ to be the subset of H^* of all sums of pairwise perpendicular imaginary simple roots perpendicular to λ . In the set $W \times \mathcal{A}(\lambda)$, we have the extended Bruhat ordering \geq defined in [4].

The following describes the property (*) in terms of the extended Bruhat ordering.

PROPOSITION 2.2. [3, PROPOSITION 2.9]. Let $\lambda \in P_+$ and $(w_i, \beta_i) \in W \times \mathcal{A}(\lambda)$, for i = 1, 2. Then $\{w_2(\lambda + \rho - \beta_2) - \rho, w_2(\lambda + \rho - \beta_1) - \rho\}$ has the property (*) if and only if $(w_1, \beta_1) \geq (w_2, \beta_2)$.

We note that the relation (*) is not symmetric. We extend the equivalence relation \sim to GKM algebras in the same way as in Kac-Moody algebras.

DEFINITION 2.3. For $\lambda, \mu \in H^*$ we define $\lambda \sim \mu$ if there exists a sequence $\lambda = \lambda_0, \lambda_1, ..., \lambda_k = \mu$ in H^* such that for every $0 \le i \le k$, either $\{\lambda_i, \lambda_{i+1}\}$ or $\{\lambda_{i+1}, \lambda_i\}$ has the property (*).

DEFINITION 2.4. Let Λ be an equivalence class of H^* under \sim . A modules $M \in \mathcal{O}$ is said to be of type Λ iff all the components of M have highest weights belonging to Λ .

The following Lemma 2.5 and Proposition 2.6 are proved for a contragradient Lie algebra which is more general than a generalized Kac-Moody algebra.

LEMMA 2.5. [2, Proposition 4.4] Let $M(\lambda)$ and $M(\mu)$ be Verma modules with highest weights λ and μ , respectively. Then $\operatorname{Ext}_G(M(\lambda), M(\mu)) = 0$ if λ and μ are inequivalent.

PROPOSITION 2.6. [2, Theorem 4.2] Let G be any GKM algebras. Let M, N be two G modules in \mathcal{O} , such that M(resp.N) is of type $\Lambda_M(resp. \Lambda_N)$. Then

- (1) If $\Lambda_M \neq \Lambda_N$ then $Ext_G(M, N) = 0$.
- (2) There exists a unique set of $\{M_{\Lambda}\}_{\Lambda}$ of submodules of M such that
 - (i) M_{Λ} is of type Λ and
 - (ii) $M = \bigoplus_{\Lambda} M_{\Lambda}$.

3. Subcategory \mathcal{O}^g and equivalence classes in K^g

In this section we extend the notion of category \mathcal{O}^g for Kac-Moody algebras and generalize their category decomposition theorem to arbitrary symmetrizable GKM algebras.

Wansoon Kim

DEFINITION 3.1. Let $C = \{\lambda \in H^* \mid (\lambda, \alpha_i) \geq 0, \forall \text{ simple roots } \alpha_i\}$. Put $K = \bigcup_{\lambda,\beta} W(\lambda + \rho - \beta)$, where λ runs in C and $\beta \in \mathcal{A}(\lambda)$.

Now we set $K^g = -\rho + K$, $C^g = -\rho + C$.

Proposition 3.2. (1) K is W-invariant.

(2) Every orbit of W in K contains a unique element of C.

Proof. By definition (1) is clear. For (2) one modifies the proof of Proposition 1.3 in [5] slightly.

LEMMA 3.3. Let $w(\lambda + \rho - \beta) - \rho \in K^g$ and $\{w(\lambda + \rho - \beta) - \rho, \mu\}$ satisfy condition (*). Then $\mu = \sigma(\lambda + \rho - \beta_0) - \rho$ for some $\sigma \in W$ and some $\beta_0 \in \mathcal{A}(\lambda)$. In particular $\mu \in K^g$.

Proof. By definition of K^g , λ is in C. Then for any β in $\mathcal{A}(\lambda)$ and simple root α_i we have $(\lambda - \beta, \alpha_i) \geq 0$. Thus $\lambda - \beta \in C$. In the proof of Proposition 4.2 in [3], this Lemma was proved assuming that $\lambda - \beta \in P_+$. However, if one looks at the proof carefully one can find that his proof carries over to the case $\lambda - \beta \in C$.

We denote by \mathcal{O}^g the full subcategory of the category \mathcal{O} consisting of those modules $M \in \mathcal{O}$ such that all the irreducible subquotients have highest weights in K^g .

The following is an immediate consequence of Lemma 3.3.

Proposition 3.4. If $\lambda \in K^g$, then $M(\lambda) \in \mathcal{O}^g$

Next we define an equivalence relation \approx in K^g (resp. $\mathcal{A}(\lambda_0)$) by using K^g (resp. $\mathcal{A}(\lambda_0)$) in place of H^* in the definition of \sim .

For $\lambda_0 \in C^g$, and β_0 in $\mathcal{A}(\lambda_0)$. We denote by $[\beta_0]$ the equivalence class under \approx containing β_0 and $[\mathcal{A}(\lambda_0)]$ be the set of all equivalence classes $[\beta_0]$ in $\mathcal{A}(\lambda_0)$. Let $W(\lambda_0)$ be the subgroup of W generated by $\{s_{\phi} \mid \phi \text{ a real root and } 2(\lambda_0 + \rho, \phi)/(\phi, \phi) \in Z\}$. Consider disjoint union $\dot{\cup}(W/W(\lambda_0) \times [\mathcal{A}(\lambda_0)])$.

PROPOSITION 3.5. The set of equivalence classes under \approx is in bijective correspondence with the set $\dot{\cup}(W/W(\lambda_0)\times[\mathcal{A}(\lambda_0)])$.

Proof. Let $\lambda_0 \in C^g$ and $\beta_0 \in \mathcal{A}(\lambda_0)$. Consider a set $A = \{\sigma w(\lambda_0 + \rho - \beta) - \rho\}_{w \in W(\lambda_0), \beta \in [\beta_0]}$. First note that $A \in K^g$. We show that A is an equivalence class under \approx . For any element $w \in W(\lambda_0)$ we write $w = s_{\phi_1} s_{\phi_2} \cdots s_{\phi_k}$ where each ϕ_i is real and $2(\lambda_0 + \rho, \phi_i)/(\phi_i, \phi_i) \in \mathbb{Z}$. Since $\beta_0 \in A(\lambda_0)$ and the Weyl group is generated by real simple reflections, we have $2(\beta_0, \phi_i)/(\phi_i, \phi_i) \in \mathbb{Z}$ for $\phi_i, 1 \leq i \leq k$. Therefore for each ϕ_i we have $2(\lambda_0 + \rho - \beta_0, \phi_i)/(\phi_i, \phi_i) \in \mathbb{Z}$. Using this with the fact $w = s_{\phi_1} s_{\phi_2} \cdots s_{\phi_k}$ one can show that $\sigma(\lambda_0 + \rho - \beta_0) - \rho \approx \sigma w(\lambda_0 + \rho - \beta_0) - \rho$.

We now consider $\beta \in [\beta_0]$. By definition of $[\beta_0]$ there exist $\beta_0, \beta_1, ..., \beta_k = \beta$ in $\mathcal{A}(\lambda_0)$ such that either $\{\beta_i, \beta_{i+1}\}$ or $\{\beta_{i+1}, \beta_i\}$ has property (*). By Proposition 2.2 either $\beta_i \geq \beta_{i+1}$ or $\beta_{i+1} \geq \beta_i$, which implies either $(\sigma w, \beta_i) \geq (\sigma w, \beta_{i+1})$ or $(\sigma w, \beta_{i+1}) \geq (\sigma w, \beta_i)$. Hence $\sigma w(\lambda_0 + \rho - \beta_{i+1}) - \rho \approx \sigma w(\lambda_0 + \rho - \beta_i) - \rho$.

Next consider $\nu \in K^g$ such that $\nu \approx \sigma(\lambda_0 + \rho - \beta_0) - \rho$. By definition of \approx there exist $\nu = \lambda_1, \lambda_2, ..., \lambda_n = \sigma(\lambda_0 + \rho - \beta_0) - \rho$ in K^g such that either $\{\lambda_i, \lambda_{i+1}\}$ or $\{\lambda_{i+1}, \lambda_i\}$ has property (*). Without loss of generality, we may assume $\lambda_{n-1} = \nu$. In case $\{\sigma(\lambda_0 + \rho - \beta_0) - \rho, \nu\}$ has property (*), by Lemma 3.3 $\nu = w\sigma(\lambda_0 + \rho - \beta) - \rho$ for some $w \in W(\lambda_0)$ and $\beta \in [\beta_0]$. Using induction on the length of w one can show that $\sigma^{-1}w\sigma \in W(\lambda_0)$. This proves $\nu \in A$. Consider the case $\{\nu, \sigma(\lambda_0 + \rho - \beta_0) - \rho\}$ has property (*). Since $\nu \in K^g$ by Proposition 2.2 $\sigma(\lambda_0 + \rho - \beta_0) - \rho = w(\nu + \rho - \beta) - \rho$ for some $\nu \in W$ and $\nu \in$

Now we define a map from K^g/\approx to $(\dot{\cup}W/W(\lambda_0)\times[\mathcal{A}(\lambda_0)])$ as follows: Given any equivalence class Λ^g any element μ in Λ^g is of the form $\mu=\tau(\lambda_0+\rho-\beta_0)-\rho$ for some $\tau\in W$ and $\beta_0\in A(\lambda_0)$. We corresponds Λ^g to the set $\tau W(\lambda_0)\times[\beta_0]$ in $\dot{\cup}(W/W(\lambda_0)\times[\mathcal{A}(\lambda_0)])$. We show this map is well defined. Suppose $\mu=\tau(\lambda_0+\rho-\beta_0)-\rho=\theta(\lambda_\theta+\rho-\beta)-\rho$ for some $\lambda_\theta\in C$ and $\beta\in\mathcal{A}(\lambda_\theta)$. By Proposition 3.2 $\lambda_0+\rho-\beta_0=\lambda_\theta+\rho-\beta$ and $\tau=\theta$. Hence $\lambda_0-\lambda_\theta=\beta_0-\beta$. Since $\beta_0-\beta$ is the sum of simple imaginary roots with integer coefficients $W(\lambda_0)=W(\lambda_\theta)$ and $\beta_0\approx\beta$. This proves the Proposition. \square

Wansoon Kim

For an equivalence class Λ^g , we let $M \in \mathcal{O}^g$ is said to be of type Λ^g iff all the components of M have highest weights belonging to Λ^g .

The following is an immediate consequence of Lemma 3.3 and Proposition 2.6.

PROPOSITION 3.6. (1) Let $M \in \mathcal{O}^g$. Then there exist a unique family M_{Λ^g} of submodules of M such that

- (i) $M_{\Lambda^g} \in \mathcal{O}_{\Lambda^g}^g$ and
- (ii) $M = \bigoplus_{\Lambda^g} M_{\Lambda^g}$.
- (2) Let M be any module in the category $\mathcal{O}(\text{resp. }\mathcal{O}^g)$ such that it has no irreducible subquotients $L(\nu)$ with $\nu \approx 0(\text{resp.}\nu \approx 0)$, then Ext(G,M)=0.

References

- [1] A. Rocha- Caridi and N. R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 10 (1982), 151-177.
- [2] V. V. Deodhar, O. Gabber, and V. G. Kac, Structure of some categories of representations of infinite dimensional Lie algebras, Adv. in Math. 45 (1982), 92-116.
- [3] S. Naito, The strong Bernstein-Gelfand-Gelfand resolutions for generalized Kac-Moody algebras, I, Publ, RIMS. Kyoto Univ. 29 (1993), 709-730.
- [4] ______, The strong Bernstein-Gelfand-Gelfand resolutions for generalized Kac-Moody algebras, II, J. of Algebra 167 (1994), 778-802.
- [5] V. G. Kac and D. H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125-264.

DEPARTMENT OF MATHEMATICS, HOSEO UNIVERSITY, ASAN 337-850, KOREA