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SOME MODULES IN CATEGORY O
AND THEIR DECOMPOSITION OVER
GENERALIZED KAC-MOODY LIE ALGEBRAS

WANSOON Kim

ABSTRACT. We extend the notion of equivalence relation = for Kac-
Moody algebras to generalized Kac-Moody algebras and prove some
analogues of results for Kac-Moody algebras.

1. Introduction

In this paper we extend the notion of equivalence relation ~ for Kac-
Moody algebras to generalized Kac-Moody algebras(= GKM algebras)
and prove some analogues of results for Kac-Moody algebras. Here,
GKM algebras are a class of contragredient Lie algebras G(A) over C
associated to a real square matrix A = (a;;); j.cs indexed by a finite set
I which satisfies the conditions:

(C1) either a;; = 2 or ay; < 0;
(CQ) a;; < 0if i s 7, and aij € Zifa; =2;
(C3) a;; = 0 implies aj; = 0.

We also extend the equivalence relation ~ (defined in [2]) from K¢
to a larger subset K9 C H” (we use same notation K9), for GKM
algebras. We prove the equivalence classes in K9 for GKM algebras
have a property similar to that of the equivalence classes for Kac-Moody
algebras. We also prove that their category decomposition theorem for
09 can be extended.

Received May 16, 1996.

1991 Mathematics Subject Classification: 17B10, 17B65.

Key words and phrases: Generalized Kac-Moody Lie algebras, Verma modules,
category O.

This paper was partially supported by KOSEF-RCAA, 1996.



Wansoon Kim

2. Decomposition Theorem of Modules in the category O

Let H be a Cartan subalgebra of G, II the set of simple roots {ay,i €
I}. Let W be the Weyl group. Fix an element p in H* such that
(p, i) = $(ai, ;). Here, (, ) is a nondegenerate bilinear form on H*.
We denote by P, the set of dominant integrals. Let I"¢(resp. I'™) be
the subset {7 € Ila;; = 2 (resp. a;; < 0 } of the indexing set I. For
a; € IT we call o; real(resp. imaginary) simple root when i € I"¢(resp.
I7,m)'

First, we recall the definition of the category O whose objects are G
modules M satisfying:

(1) M is H—semisimple with finite dimensional weight spaces.

(2) There exist finitely many elements 1, i, -- - ur € H* such that
any weight of M (u is a weight iff M, # 0) belongs to some D(pu;),
where D,,, = {pi — |y € Q4 = > Z>o00;}-

An important class of modules in O is the class of highest modules,
in particular Verma modules.

For u € H*, any M € O has a local composition series at yu whose
subquotients are irreducible highest weight modules. We call these
subquotients components of M. The following Proposition describes
the components of Verma modules.

ProOPOSITION 2.1. [2, Theorem 3.6] Let A, € H*. Then L(u) is a
component of M(\) iff the ordered pair {A, u} has the following condi-
tion:

(*) There exist a sequence ¢1,¢2, ..., ¢, of positive roots and a se-
quence ni,na,...,n; of positive integers such that

(i) A—p=31"" nig,
(il) 2A+p—n1¢1—-- —nj_1d;-1,¢;) = nj(¢;.¢;), V1<i<k

Now fix A € H*. Define A(\) to be the subset of H* of all sums of
pairwise perpendicular imaginary simple roots perpendicular to \. In
the set W x A()\), we have the extended Bruhat ordering = defined
in [4].

The following describes the property (*) in terms of the extended
Bruhat ordering.
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PROPOSITION 2.2. [3, PROPOSITION 2.9]. Let A € P, and (w;, 3;)
€ Wx A(}), fori = 1,2. Then {wa(A+p—B2) — pywz(A+ p— B1) — p}
has the property (*) if and only if (wy, 81) 2 (ws, 52).

We note that the relation (*) is not symmetric. We extend the
equivalence relation ~ to GKM algebras in the same way as in Kac-
Moody algebras.

DEFINITION 2.3. For A,u € H* we define A ~ p if there exists a
sequence A = g, A1, ..., A\x = p in H* such that for every 0 < i < k,
either {A;, 11} or {Ai11,\} has the property (*).

DEFINITION 2.4. Let A be an equivalence class of H* under ~. A
modules M € O is said to be of type A iff all the components of M
have highest weights belonging to A.

The following Lemma 2.5 and Proposition 2.6 are proved for a con-
tragradient Lie algebra which is more general than a generalized Kac-
Moody algebra.

LEMMA 2.5. [2, Proposition 4.4] Let M()\) and M(u) be Verma
modules with highest weights A and p, respectively. Then Extc(M())
M(p)) = 0 if X and p are inequivalent.

N

PROPOSITION 2.6. [2, Theorem 4.2] Let G be any GKM algebras.
Let M,N be two G modules in O, such that M(resp.N) is of type
Ap(resp. Ay). Then

(1) If An # An then Extg(M,N) = 0.

(2) There exists a unique set of {Ma}a of submodules of M such

that
(i) My is of type A and
(ii) M = DM,

3. Subcategory Y and equivalence classes in K9

In this section we extend the notion of category 09 for Kac-Moody
algebras and generalize their category decomposition theorem to arbi-
trary symmetrizable GKM algebras.
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DEFINITION 3.1. Let C = {A € H* | (), ;) > 0, V¥ simple roots
a;}. Put K = U, sW(A+ p— ), where A runs in C and g € A()).

Now weset K9=—p+ K,C9= —p+ (.

ProposiTION 3.2. (1) K is W —invariant.
(2) Every orbit of W in K contains a unique element of C.

Proof. By definition (1) is clear. For (2) one modifies the proof of
Proposition 1.3 in [5] slightly. O

LEMMA 3.3. Let w(A+p—8) —p € K9 and {w(A+p~ B8) — p, u}
satisty condition (x). Then p = o(A+ p— Bo) — p for some 0 € W and
some By € A(XN). In particular p € K9.

Proof. By definition of K9, X is in C. Then for any 3 in A()) and
simple root a; we have (A — 8,;) > 0. Thus A — 8 € C. In the
proof of Proposition 4.2 in [3], this Lemma was proved assuming that
A — 3 € Py. However, if one looks at the proof carefully one can find
that his proof carries over to the case A — 3 € C. O

We denote by O9 the full subcategory of the category O consisting
of those modules M € O such that all the irreducible subquotients have
highest weights in K9.

The following is an immediate consequence of Lemma 3.3.

PROPOSITION 3.4. If A € K9, then M()) € O9

Next we define an equivalence relation = in K9 (resp. .A(\g)) by
using K9 (resp. A(XAp)) in place of H* in the definition of ~.

For Ay € €Y, and §y in A(\g). We denote by [3] the equivalence
class under =~ containing Gy and [A(\g)] be the set of all equivalence
classes [Bo] in A(Ag). Let W (o) be the subgroup of W generated by
{s6 | ¢ areal root and 2(Xo + p, #)/(¢,¢) € Z}. Consider disjoint
union U(W/W (Xg) x [A(Xo)]).

PROPOSITION 3.5. The set of equivalence classes under = is in bi-
Jective correspondence with the set U(W/W (Xg) x [A(Xo))).

|
J
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Proof. Let A\g € CY9 and By € A(Xp). Consider a set A = {ow(Xp +
P — B) — Plwew(re),8¢]3)- First note that A € K9. We show that A
1s an equivalence class under ~. For any element w € W()\p) we write
W = 8¢, 8¢, - 54, Where each ¢; is real and 2(\g + p, ¢;)/ (¢, ¢:) €
Z. Since Gy € A(Xp) and the Weyl group is generated by real simple
reflections, we have 2(08p, ¢;)/(¢i, ;) € Z for ¢;,1 < i < k. Therefore
for each ¢; we have 2(Ao + p — B0, ¢:)/ (¢4, ¢;) € Z. Using this with
the fact w = s4, 54, - s¢, one can show that o(Ag + p— By) — p =~
ow(Ao + p — Bo) — p-

We now consider 3 € [Gy]. By definition of [3p) there exist 8o, 51, ...,
Br = B in A(Ag) such that either {3;, B;+1} or {fi+1,0;} has property
(*). By Proposition 2.2 either 3; 2 B3;41 or 3,11 = 3;, which implies
either (ow, 8;) 2 (ow,Bi+1) or (ow,Bi+1) 2 (ow,5;). Hence ocw(Ao +
p—Bit1) — p~ow(o+ p— B;) — p.

Next consider v € K9 such that v = o(Xo+p—0y)—p. By definition of
~ there exist v = Ay, Ag, ..., Ay = 0(Ao+p—Fo)—p in K9 such that either
{As, Ais1} or {Ait1, A} has property (¥). Without loss of generality, we
may assume A, _; = v. In case {o(Ao+ p—Bo) — p, v} has property (*),
by Lemma 3.3 v = wo (Ao + p— ) — p for some w € W(Xg) and 8 € [Bo).
Using induction on the length of w one can show that o~ twa € W (\o).
This proves v € A. Consider the case {v,0(Ag+p—00)—p} has property
(*). Since v € K9 by Proposition 2.2 6(Ag+p—08o) —p = w(v+p—B)—p
for some w € W and 8 € [By]. Therefore w™lo(Ao+p—0Fo) —p+8=v
and oo w o (Ao + p— Bo + 0 wB) — p = v. Moreover, if one look at
the proof of Proposition 2.2 one can conclude that o~ tw™1o € W(\p)
and o~ 'w@ is a sum of simple imaginary root with integer coefficients,
which implies By — o~ 'wB ~ By in A()). This proves v € A.

Now we define a map from K9/ = to (UW/W(X) x [A(Xo)]) as
follows: Given any equivalence class A? any element u in A9 is of the
form pu = 7(Ag + p — Bo) — p for some 7 € W and By € A(Ng). We
corresponds A9 to the set TW(Xg) x [Bo] in U(W/W(Xg) x [A(Xo)])-
We show this map is well defined. Suppose pt = (Ao +p~ 5g) —p =
8(Xo + p — B) — p for some Ay € C and 8 € A(N\y). By Proposition 3.2
M+p—00 =X +p—0Fand 7 = 6. Hence \g -- \y = B9 — 3. Since
Bo — 0 is the sum of simple imaginary roots with integer coefficients
W(Ao) = W(XAg) and By =~ (. This proves the Proposition. d
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For an equivalence class A9, we let M € 09 is said to be of type AY
iff all the components of M have highest weights belonging to A9.

The following is an immediate consequence of Lemma 3.3 and Propo-
sition 2.6.

PROPOSITION 3.6. (1) Let M € 9. Then there exist a unique
family Mye of submodules of M such that

(i) Mas € O%, and
(11) M = @AQMAU.

(2) Let M be any module in the category O(resp. O9) such that it
has no irreducible subquotients L(v) with v ~ O(resp.v = 0), then
Ext(G,M) = 0.
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