• Title/Summary/Keyword: Generalized Apostol-Euler polynomials

Search Result 3, Processing Time 0.015 seconds

A NEW CLASS OF GENERALIZED APOSTOL-TYPE FROBENIUS-EULER-HERMITE POLYNOMIALS

  • Pathan, M.A.;Khan, Waseem A.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.477-499
    • /
    • 2020
  • In this paper, we introduce a new class of generalized Apostol-type Frobenius-Euler-Hermite polynomials and derive some explicit and implicit summation formulae and symmetric identities by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Frobenius-Euler type polynomials and Hermite-based Apostol-Euler and Apostol-Genocchi polynomials studied by Pathan and Khan, Kurt and Simsek.

Some Properties of the Generalized Apostol Type Hermite-Based Polynomials

  • KHAN, WASEEM AHMAD
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.597-614
    • /
    • 2015
  • In this paper, we study some properties of the generalized Apostol type Hermite-based polynomials. which extend some known results. We also deduce some properties of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-Euler polynomials and the generalized Apostol-Genocchi polynomials of high order. Numerous properties of these polynomials and some relationships between $F_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ and $_HF_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions.

A FURTHER GENERALIZATION OF APOSTOL-BERNOULLI POLYNOMIALS AND RELATED POLYNOMIALS

  • Tremblay, R.;Gaboury, S.;Fugere, J.
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.311-326
    • /
    • 2012
  • The purpose of this paper is to introduce and investigate two new classes of generalized Bernoulli and Apostol-Bernoulli polynomials based on the definition given recently by the authors [29]. In particular, we obtain a new addition formula for the new class of the generalized Bernoulli polynomials. We also give an extension and some analogues of the Srivastava-Pint$\acute{e}$r addition theorem [28] for both classes. Finally, by making use of the new adition formula, we exhibit several interesting relationships between generalized Bernoulli polynomials and other polynomials or special functions.