References
- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Washington, DC, 1964.
- T. M. Apostol, On the Lerch zeta function, Pacic J. Math. 1 (1951), 161-167. https://doi.org/10.2140/pjm.1951.1.161
- K. N. Boyadzhiev, Apostol-bernoulli functions, derivative polynomials and eulerian polynomials, Advances and Applications in Discrete Mathematics 1 (2008), no.2, 109-122.
- J. Choi, P. J. Anderson, and H. M. Srivastava, Some q-extensions of the apostolbernoulli and the apostol-euler polynomials of order n, and the multiple hurwitz zeta function, Appl. Math. Comput 199 (2008), 723-737. https://doi.org/10.1016/j.amc.2007.10.033
- L. Comtet, Advanced combinatorics: The art of nite and innite expansions, (Translated from french by J.W. Nienhuys), Reidel, Dordrecht, 1974.
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher transcendental functions, vols.1-3,, 1953.
- M. Garg, K. Jain, and H. M. Srivastava, Some relationships between the generalized apostol-bernoulli polynomials and hurwitz-lerch zeta functions, Integral Transform Spec. Funct. 17 (2006), no. 11, 803-815. https://doi.org/10.1080/10652460600926907
- E. R. Hansen, A table of series and products, Prentice-Hall, Englewood Cliffs, NJ, 1975.
-
B. Kurt, A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials
$B_{n}^{2}$ (x, y), Appl. Math.Sci. Vol.4 (47) (2010), 2315-2322. - Y. Luke, The special functions and their approximations, vols. 1-2, 1969.
- Q.-M. Luo, Apostol-Euler polynomials of higher order and gaussian hypergeometric functions, Taiwanese J. Math. 10 (4) (2006), 917-925. https://doi.org/10.11650/twjm/1500403883
- Q.-M. Luo, Fourier expansions and integral representations for the apostol-bernoulli and apostol-euler polynomials, Math. Comp. 78 (2009), 2193-2208. https://doi.org/10.1090/S0025-5718-09-02230-3
- Q.-M. Luo, The multiplication formulas for the apostol-bernoulli and apostol-euler polynomials of higher order, Integral Transform Spec. Funct. 20 (2009), 377-391. https://doi.org/10.1080/10652460802564324
- Q.-M. Luo, Some formulas for apostol-euler polynomials associated with hurwitz zeta function at rational arguments, Applicable Analysis and Discrete Mathematics 3 (2009), 336-346. https://doi.org/10.2298/AADM0902336L
-
Q.-M. Luo, An explicit relationship between the generalized apostol-bernoulli and apostol-euler polynomials associated with
${\lambda}$ -stirling numbers of the second kind, Houston J. Math. 36 (2010), 1159-1171. - Q.-M. Luo, Extension for the genocchi polynomials and its fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291-310.
- Q.-M. Luo, B.-N. Guo, F. Qui, and L. Debnath, Generalizations of Bernoulli numbers and polynomials, Int. J. Math. Math. Sci. 59 (2003), 3769-3776.
- Q.-M. Luo and H.M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math.Anal.Appl. 308 (1) (2005), 290-302. https://doi.org/10.1016/j.jmaa.2005.01.020
- Q.-M. Luo and H.M. Srivastava, Some generalizations of the apostol-genocchi polynomials and the stirling numbers of the second kind, Appl. Math. Comput 217 (2011), 5702-5728. https://doi.org/10.1016/j.amc.2010.12.048
- Q.M. Luo and H.M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51 (2006), 631-642 https://doi.org/10.1016/j.camwa.2005.04.018
- F. Magnus, W. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Springer-Verlag, New York, 1966.
- P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 3 (2003), 155-163.
- M. Prevost, Pade approximation and apostol-bernoulli and apostol-euler polynomials, J. Comput. Appl. Math. 233 (2010), 3005-3017. https://doi.org/10.1016/j.cam.2009.11.050
- E. D. Rainville, Special functions, Macmillan Company, New York, 1960.
- H. M. Srivastava and J. Choi, Series associated with zeta and related functions, Kluwer Academin Publishers, Dordrecht, Boston and London, 2001.
- H. M. Srivastava, M. Garg, and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys. 17 (2010), 251-261. https://doi.org/10.1134/S1061920810020093
- H. M. Srivastava, J.-L. Lavoie, and R. Tremblay, A class of addition theorems, Canad. Math.Bull. 26 (1983), 438-445. https://doi.org/10.4153/CMB-1983-072-1
- H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (4) (2004), 375-380. https://doi.org/10.1016/S0893-9659(04)90077-8
- R. Tremblay, S. Gaboury, and B. J. Fugere, A new class of generalized Apostol- Bernoulli polynomials and some analogues of the Srivastava-Pinter addition theorem, Appl. Math. Lett. 24 (2011), 1888-1893. https://doi.org/10.1016/j.aml.2011.05.012
- W. Wang, C. Jia, and T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55 (2008), 1322-1332. https://doi.org/10.1016/j.camwa.2007.06.021
Cited by
- -Extensions for the Apostol Type Polynomials vol.2018, pp.1687-0409, 2018, https://doi.org/10.1155/2018/2937950