• Title/Summary/Keyword: General strain theory

Search Result 75, Processing Time 0.022 seconds

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

TIME-DEPENDENT FRACTURE OF ARTICULAR CARTILAGE: PART 1 - THEORY & VALIDATION

  • Mun, M.S.;Lewis, J.L.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.27-33
    • /
    • 1995
  • A time-dependent large deformation fracture theory is developed for application to soft biological tissues. The theory uses the quasilinear viscoelastic theory of Fung, and particularizes it to constitutive assumptions on polyvinyl-chloride (PVC) (Part I) and cartilage (Part II). This constitutive theory is used in a general viscoelastic theory by Christensen and Naghdi and an energy balance to develop an expression for the fracture toughness of the materials. Experimental methods are developed for measuring the required constitutive parameters and fracture data for the materials. Elastic stress and reduced relaxation functions were determined using tensile and shear tests at high loading rates with rise times of 25-30 msec, and test times of 150 sec. The developed method was validated, using an engineering material, PVC to separate the error in the testing method from the inherent variation of the biological tissues. It was found that the the proposed constitutive modeling can predict the nonlinear stress-strain and the time-dependent behavior of the material. As an approximation method, a pseudo-elastic theory using the J-integral concept, assuming that the material is a time-independent large deformation elastic material, was also developed and compared with the time-dependent fracture theory. For PVC. the predicted fracture toughness is $1.2{\pm}0.41$ and $1.5{\pm}0.23\;kN/m$ for the time-dependent theory and the pseudo-elastic theory, respectively. The methods should be of value in quantifying fracture properties of soft biological tissues. In Part II, an application of the developed method to a biological soft tissue was made by using bovine humeral articular cartilage.

  • PDF

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Buckling analysis of bidirectional FG porous beams in thermal environment under general boundary condition

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • This work presents a comprehensive investigation of buckling behavior of bidirectional functionally graded imperfect beams exposed to several thermal loading with general boundary conditions. The nonlinear governing equations are derived based on 2D shear deformation theory together with Von Karman strain-displacement relation. The beams are composed of two different materials. Its properties are porosity-dependent and are continuously distributed over the length and thickness of the beams following a defined law. The resulting equations are solved analytically in order to determine the thermal buckling characteristics of BDFG porous beams. The precision of the current solution and its accuracy have been proven by comparison with works previously published. Numerical examples are presented to explore the effects of the thermal loading, the elastic foundation parameters, the porosity distribution, the grading indexes and others factors on the nonlinear thermal buckling of bidirectional FG beam rested on elastic foundation.

A Study on the Classic Theory-Driven Predictors of Adolescent Online and Offline Delinquency using the Random Forest Machine Learning Algorithm (랜덤포레스트 머신러닝 기법을 활용한 전통적 비행이론기반 청소년 온·오프라인 비행 예측요인 연구)

  • TaekHo, Lee;SeonYeong, Kim;YoonSun, Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.28 no.4
    • /
    • pp.661-690
    • /
    • 2022
  • Adolescent delinquency is a substantial social problem that occurs in both offline and online domains. The current study utilized random forest algorithms to identify predictors of adolescents' online and offline delinquency. Further, we explored the applicability of classic delinquency theories (social learning, strain, social control, routine activities, and labeling theory). We used the first-grade and fourth-grade elementary school panels as well as the first-grade middle school panel (N=4,137) among the sixth wave of the nationally-representative Korean Children and Youth Panel Survey 2010 for analysis. Random forest algorithms were used instead of the conventional regression analysis to improve the predictive performance of the model and possibly consider many predictors in the model. Random forest algorithm results showed that classic delinquency theories designed to explain offline delinquency were also applicable to online delinquency. Specifically, salient predictors of online delinquency were closely related to individual factors(routine activities and labeling theory). Social factors(social control and social learning theory) were particularly important for understanding offline delinquency. General strain theory was the commonly important theoretical framework that predicted both offline and online delinquency. Findings may provide evidence for more tailored prevention and intervention strategies against offline and online adolescent delinquency.

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Influences of Core Materials during Impact The Bulging Behavior of Sleeved Polymer Projectiles (슬리브드 폴리머 발사체의 충격시 벌징 거동 패턴에 미치는 코어 재료의 영향)

  • Shin, Hyung-Seop;Park, Sung-Taek;Jung, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.198-203
    • /
    • 2008
  • In the present study, the deformation behavior of both of metal and polymer combination on impact was investigated. They have showed a different deformation behavior when the co-axially combined projectile was impacted on rigid target. The theory according to Taylor's simplified approach assumes an ideally rigid-plastic material model exhibiting rate-independent behavior and simple one-dimensional wave propagation concepts that neglect radial inertia. In the case of impact with polymeric materials, elastic strain in general are not negligible compared with plastic strain; and the rigid-plastic material behavior assumed by Taylor for metallic materials cannot be applied any more. Since, the sleeve and the core materials have widely different mechanical properties, they will produce a significant difference of mechanical impedance with each other. Therefore these impedance mismatch influences on the deformation behavior sleeved polymer projectile on impact. As a result, sleeved projectiles will generate a very interesting impact behavior. Therefore, the according to sleeved metal material and core polymer material can see expected. The objective of this study was to investigate the factors which influences on deformation behavior pattern of sleeve materials surface.

  • PDF

Topology Optimization of General Plate Structures by Using Unsymmetric Layered Artificial Material Model (비대칭 층을 가지는 인공재료모델을 이용한 일반 평판구조물의 위상최적화)

  • Park, Gyeong-Im;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.67-74
    • /
    • 2007
  • The unsymmetrically layered artificial material model is consistently introduced to find the optimum topologies of the plate structures. Reissner-Mindlin (RM) plate theory is adopted to formulate the present 9-node plate element considering the first-order shear deformation of the plates. In the topology optimization process, the strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. In addition, the resizing algorithm based on the optimality criteria is used to update the hole size introduced in the proposed artificial material model. Several numerical examples are rallied out to investigate the performance of the proposed technique. From numerical results, the proposed topology optimization techniques are found to be very effective to produce the optimum topology of plate structures. In particular, the proposed unsymmetric stiffening layer model make it possible to produce more realistic stiffener design of the plate structures.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.258-261
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

  • PDF