• Title/Summary/Keyword: General flow conditions

Search Result 287, Processing Time 0.035 seconds

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

A Study on the Suggestions for Standard Flow Conditions considering the Variation of Stream Flow and Water Quality for the Management of Total Maximum Daily Loads (하천 유량.수질변화 특성을 고려한 수질오염총량관리 기준유량 조건에 관한 연구)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.426-435
    • /
    • 2012
  • The variation of stream flow is the one of the most important factors which influence on that of water quality in the unit watershed. The target water quality goal is established and permissible load is allotted in the base of the standard flow condition along with its water quality for the management of Total Maximum Daily Loads (TMDLs). A standard flow selected could cause problems in the load allotment if it was not properly arranged. This study reviewed the acquisition of water quality data, the self-variation and the retainability in water quality on the specific flow conditions. This study also proposed the median and the adjusted average flow condition out of general flow conditions as alternative standard flow conditions. It is considered that the alternatives can make the water quality data easily acquired and the water quality representativeness more enhanced on the standard flow conditions.

A New Transition Criterion for Stratified and Nonstratified Flows in Pipes

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.219-226
    • /
    • 1996
  • A two-step approach has been used to obtain a new transition criterion for the stratified and nonstratified flow in horizontal pipe: (1) In the first step, a more general expression than the existing models for the flow transition criterion has been derived from the analysis of singular points and neutral stability conditions, or the parallel lines conditions of the transient one-dimensional two- phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple flow transition criterion for horizontal pipes has been derived. Comparison between results predicted by the present theory with the experimental data and theories in the pipe flow conditions, show good agreement.

  • PDF

Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates (3차원 교차 주름판 내 유동의 불안정성 및 자활 진동)

  • Lee Seung Youp;Choi Young Don
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Density, Absorption and Table Flow properties of the Lower melting Point of the Modified Sulfur and General Industrial Sulfur (일반 공업용 유황과 융점을 낮춘 개질유황의 유동성, 흡수율 및 밀도 특성)

  • Kim, Heon-Tae;Lee, Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.45-46
    • /
    • 2015
  • Recently, the large amount of sulfur is globally generated by the development of the petroleum refining industry every year. In this study, without the use of the sulfur with a high melting point used in the previous studies, the modified sulfur mortar with addition of a melting point of about 65℃ were tested to determine their distribution and strength properties according to the mixing method and curing conditions. This study is a test to find out the Density, Absorption and Table Flow of the modified sulfur and general sulfur. As result, general industrial sulfur flow was lower, showed a high absorption rate.

  • PDF

A Study on Aerodynamic Loads of a Deploying Wing Launched from a Mobile Platform (이동식 플랫폼에서 발사되는 비행체의 날개 전개 공력 하중에 관한 연구)

  • Lee, Younghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2019
  • In this study, a aerodynamic loads prediction to design a deploying device of folded fin was introduced. In general, resultant flow conditions around the fin are used to obtain deploying moments and required energy. However, when it comes to the air vehicles launched from a mobile platform, more specific flow conditions can be provided. With the conditions, the design criteria can be calculated more realistically. In this study, therefore, aerodynamic moments induced by aerodynamic loads and energy required in deployment were calculated using wind-over-deck(WOD) velocity, combination of a platform velocity and a wind velocity. For the calculation, wind tunnel test was conducted on various angle of attack, side slip angles, and folding angles. It was found that the aerodynamic moments and the energy required in deployment using the non-uniform flow due to the velocity components were less than those using the uniform flow without the components.

Numerical Prediction of the Flow Characteristics of a Micro Shock Tube

  • Arun Kumar, R.;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.178-181
    • /
    • 2011
  • Recently, micro shock tube is being extensively used in various fields of engineering applications. The flow characteristics occurring in the micro shock tube may be significantly different from that of conventional macro shock tube due to very low Reynolds number and Knudsen number effects which are, in general, manifested in such flows of rarefied gas, solid-gas two-phase, etc. In these situations, Navier-Stokes equations cannot properly predict the micro shock tube flow. In the present study, a two-dimensional CFD method has been applied to simulate the micro shock tube, with slip velocity and temperature jump boundary conditions. The effects of wall thermal conditions on the unsteady flow in the micro shock tube were also investigated. The unsteady behaviors of shock wave and contact discontinuity were, in detail, analyzed. The results obtained show much more attenuation of shock wave, compared with macro-shock tubes.

  • PDF

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.