• Title/Summary/Keyword: General Inverse

Search Result 335, Processing Time 0.023 seconds

Some Exponentiated Distributions

  • Ali, M. Masoom;Pal, Manisha;Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.93-109
    • /
    • 2007
  • In this paper we study a number of new exponentiated distributions. The survival function, failure rate and moments of the distributions have been derived using certain special functions. The behavior of the failure rate has also been studied.

A Study on Development of Robot Simulator for Collision Avoidance (충돌 회피를 위한 로봇 시뮬레이터의 개발에 관한 연구)

  • 이주형
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.321-328
    • /
    • 1996
  • This paper presents a robot simulator which can automatically generate a smooth collision free path. This simulator has the characterstisc of the object - oriented programming which is coded in Borland C+ +. Using General Inverse Algorithm, the inverse kinematics solutions of any kind of robots can be found generally. This simulator also uses Bezier Functions for the description of a smooth collision - free path. In addition, GUI(Graphic User Interface)technique is employed for user's convenience.

  • PDF

FIRST ORDER HERMITE INTERPOLATION WITH SPHERICAL PYTHAGOREAN-HODOGRAPH CURVES

  • Kim, Gwang-Il;Kong, Jae-Hoon;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.73-86
    • /
    • 2007
  • The general stereographic projection which maps a point on a sphere with arbitrary radius to a point on a plane stereographically and its inverse projection have the pythagorean-hodograph (PH) preserving property in the sense that they map a PH curve to another PH curve. Upon this fact, for given spatial $C^1$ Hermite data, we construct a spatial PH curve on a sphere that is a $C^1$ Hermite interpolant of the given data as follows: First, we solve $C^1$ Hermite interpolation problem for the stereographically projected planar data of the given data in $\mathbb{R}^3$ with planar PH curves expressed in the complex representation. Second, we construct spherical PH curves which are interpolants for the given data in $\mathbb{R}^3$ using the inverse general stereographic projection.

A HYPOTHESIS TESTING PROCEDURE OF ASSESSMENT FOR THE LIFETIME PERFORMANCE INDEX UNDER A GENERAL CLASS OF INVERSE EXPONENTIATED DISTRIBUTIONS WITH PROGRESSIVE TYPE I INTERVAL CENSORING

  • KAYAL, TANMAY;TRIPATHI, YOGESH MANI;WU, SHU-FEI
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.105-121
    • /
    • 2019
  • One of the main objective of manufacturing industries is to assess the capability performance of different processes. In this paper, we use the lifetime performance index $C_L$ as a criterion to measure larger-the-better type quality characteristic for evaluating the product performance. The lifetimes of products are assumed to follow a general class of inverted exponentiated distributions. We use maximum likelihood estimator to estimate the lifetime performance index under the assumption that data are progressive type I interval censored. We also obtain asymptotic distribution of this estimator. Based on this estimator, a new hypothesis testing procedure is developed with respect to a given lower specification limit. Finally, two numerical examples are discussed in support of the proposed testing procedure.

A Study on Inverse Kinematics Based Posture and Motion Generation System for Sports Climbing (역운동학 기반 스포츠클라이밍 자세 및 동작 생성 시스템에 관한 연구)

  • Shin, Kyucheol;Son, JongHee;Kim, Dongho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.243-250
    • /
    • 2016
  • Recently, public interest in virtual reality (VR) and augmented reality (AR) has increased. Therefore, computer graphics-related research has been actively conducted. This has included research on virtual space related to human posture implementation. However, such research has focused on general posture in humans. This paper presents a system with reference to the basic posture in sports climbing and the inverse kinematics method for generating the positions and behavior of virtual characteristics in a three-dimensional virtual space. The simulation based on the inverse kinematics method, produced with an inverse kinematics solver and initial pose animation from motion capture, provides realistic and natural movement. We designed a simulation system to generate correct posture and motions similar to those in sports climbing by applying the basic procedure of sports climbing. The simulation system provides help for producing content about sports climbing, such as learning programs for novice climbers and sports climbing games.

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim;Park, Myoung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.119-126
    • /
    • 2019
  • The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.

Nonlinear programming approach for a class of inverse problems in elastoplasticity

  • Ferris, M.C.;Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.857-870
    • /
    • 1998
  • This paper deals with a special class of inverse problems in discrete structural plasticity involving the identification of elastic limits and hardening moduli on the basis of information on displacements. The governing equations lead naturally to a special and challenging optimization problem known as a Mathematical Program with Equilibrium Constraints (MPEC), a key feature of which is the orthogonality of two sign-constrained vectors or so-called "complementarity" condition. We investigate numerically the application of two simple algorithms, both based on the use of the general purpose nonlinear programming code CONOPT accessed via the GAMS modeling language, for solving the suitably reformulated problem. Application is illustrated by means of two numerical examples.

Driving Force of Inverse Electron Demand Diels-Alder Reactions of Diphenyl Tetrazines

  • Kim, Yeil;Song, Suhwan;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.128-131
    • /
    • 2017
  • We explore the inverse electron demand Diels-Alder reactions of tetrazines with various functional groups employing quantum calculations. In general, the rate of inverse electron demand Diels-Alder reaction depends on molecular orbital levels of electron donor and electron acceptor. Likewise, ${\pi}$ orbital of the dienophile and ${\pi}^*$ orbital of the diene is a key factor. In this work, we discuss the case where the energy of diene's ${\pi}^*$ molecular orbital is not the sole governing factor to determine the reaction rate, rather the rate shows strong correlation with the charge density of dienes.

  • PDF

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.