• Title/Summary/Keyword: Gene transformation

Search Result 805, Processing Time 0.033 seconds

Gene Disruption Using In Vivo and In Vitro Methylation in Streptomyces griseus

  • Maeng Jin-Soo;Bae Kyung-Sook;Kwak Jang-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1472-1476
    • /
    • 2006
  • Previous study demonstrated that the restriction barrier of Streptomyces griseus is almost completely bypassed by the Streptomyces-E. coli shuttle vectors passed through the E. coli GM161 strain and methylated with AluI and HpaII methyltransferases. The same DNA methylation of the genomic DNA fragments cloned the nonreplicative vectors generated integrative transformation and gene disruption of their chromosomal counterparts at high efficiencies in S. griseus. This result indicated that the efficiency of gene disruption depends on the efficient transfer of the incoming DNA into bacterial hosts.

Agrobacterium-mediated Transformation of Rice 'Ilmibyeo' using HPT Selection Maker Gene

  • Guo, Jia;Cho, Joon-Hyeong;Jo, Hye-Jeong;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.20 no.3
    • /
    • pp.242-246
    • /
    • 2007
  • This study was conducted to produce the transgenic plant of rice. We obtained Agrobacterium AGL1 harbaring pCambial 300 vector with HPT gene. We carried out PCR analysis of 22 ea putative transgenic rice to investigate transformed lines. The 3 ea transgenic lines were detected insertion of HPT gene. Transgenic lines selected from PCR analysis were performed by Southern blot. From Southern blot, we obtained that two transgenic lines detected single band. We are going to study the method improving of cotransformation as well as transformation efficiency in rice.

Transformation of A Plant by Ascorbate Peroxidase Gene using Agrobacterium tumefaciens (Ascorbate Peroxidase 유전자의 도입에 의한 식물의 형질전환)

  • 이인애;이효신;배은경;김기용;이병현;손대영;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2002
  • This study was conducted to obtain the transformed tobacco (Nicotiana tubacum) plants with cytosolic ascorbate peroxidase gene(ApxSC7) using Agrobacterium tumefaciens LBA4404. A cDNA encoding the cytosolic ascorbate peroxidase of strawberry, ApxSC7, was introduced into tobacco plants via Agrobacterium-mediated gene transfer system. The expression vector, pIG-AP8, harboring ApxSC7 gene was used for production of transgenic tobacco plants. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of ApxSC7 gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot analyses revealed that the pIGap8 gene was constitutively expressed.

Transformation of Pisum sativum L. var sparkle: A Non Tissue Culture Method (Agrobacterium tumefaciens를 이용한 완두(Pisum sativum L.)의 형질전환)

  • Choi, Hong Jib;Park, Soon Ki;Yoon, Young Hwi;Kim, Dal Ung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.11-17
    • /
    • 1993
  • The transfer of genetic material into pea tissue was accomplished by using an avirulent strain of Agrobacterium tumefaciens containing the binary vector. The method used for transformation requires non-tissue culture steps as it involves the inoculation of the site of the shoot removed of germinating seeds. The identification of ${\beta}$-glucuronidase activity in the tissues of $T_0$ pea plants indicates that the plant expressible ${\beta}$-glucuronidase gene, contained the T-DNA region from pLPBO2, had been transferred at least into somatic tissues. Putative transformed $T_0$ pea plants were advanced to produce $T_1$ plants which were also assayed for the presence of the transferred ${\beta}$-glucuronidase gene. The presence of the ${\beta}$-glucuronidase gene in DNAs isolated from $T_1$ plant was demonstrated by DNA gel blot hybridization. This analysis revealed that the transformed plants contained ${\beta}$-glucuronidase gene.

  • PDF

Effects of Cell Wall on the Transformation of Microalgae by a Digital Microfluidic System (디지털 미세유체를 이용한 미세녹조류 형질전환에서의 세포벽의 영향 분석)

  • Im, Do Jin
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Digital microfluidic electroporation system was used for the transformation of microalgae and we have obtained higher transformation efficiency and viability than that of conventional method. Key parameters of electroporation such as pulse voltage, number, and duration time were systematically investigated for two different microalgal strains with and without cell wall. We have found that cell wall does not always have negative effects on the gene transformation of microalgae. Parallel processing of proposed digital microfluidic electroporation was demonstrated together with on chip culture of microalgae.

The Use of Glufosinate as a Selective Marker for the Transformation of Cucumber (Cucumis sativus L.) (오이의 형질전환을 위반 선발마커로서 Glufosinate의 이용)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.161-165
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary explants transformation was used to produce transgenic cucumber. Cotyledonary explants of cucumber (c.v., Eunchim) were co-cultivated with strains Agrobaderium (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 355 promoter-gus gene as reporter and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depending Agrobacterium strains. The EHA101 of bacterial strains employed gave the maximum frequency (0.35%) for cucumber transformation. Histochemical gus and leaf painting assay showed that 15 individual lines were transgenic with the gus and bar gene. Southern blot analysis also revealed that the gus gene was successfully integrated into each genome of transgenic cucumber.

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

Effect of GC Content on Target Hook Required for Gene Isolation by Transformation-Associated Recombination Cloning (Transformation-associated recombination cloning에 의한 유전자 분리에 사용되는 target hook에 대한 GC content의 영향)

  • 김중현;신영선;윤영호;장형진;김은아;김광섭;정정남;박인호;임선희
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.128-134
    • /
    • 2003
  • Transformation-associated recombination (TAR) cloning is based on co-penetration into yeast spheroplasts of genomic DNA along with TAR vector DNA that contains 5'- and 3'-sequences (hooks) specific for a gene of interest, followed by recombination between the vector and the human genomic DNA to establish a circular YAC. Typically, the frequency of recombinant insert capture is 0.01-1% for single-copy genes by TAR cloning. To further refine the TAR cloning technology, we determined the effect of GC content on target hooks required for gene isolation utilizing the $Tg\cdot\AC$ mouse transgene as the targeted region. For this purpose, a set of vectors containing a B1 repeated hook and Tg AC-specific hooks of variable GC content (from 18 to 45%) was constructed and checked for efficiency of transgene isolation by radial TAR cloning. Efficiency of cloning decreased approximately 2-fold when the TAR vector contained a hook with a GC content ~${\leq}23$% versus ~40%. Thus, the optimal GC content of hook sequences required for gene isolation by TAR is approximately 40%. We also analyzed how the distribution of high GC content (65%) within the hook affects gene capture, but no dramatic differences for gene capturing were observed.

High-efficiency development of herbicide-resistant transgenic lilies via an Agrobacterium-mediated transformation system (고효율의 아그로박테리움 형질전환법을 이용한 제초제저항성 나리 식물체 개발)

  • Jong Bo Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.56-62
    • /
    • 2023
  • Transgenic lilies have been obtained using Agrobacterium tumefaciens (AGL1) with the plant scale explants, followed by DL-phosphinothricin (PPT) selection. In this study, scales of lily plants cv. "red flame" were transformed with the pCAMBIA3301 vector containing the gus gene as a reporter and the blpR gene as a selectable marker, as well as a gene of interest showing herbicide tolerance, both driven by the CaMV 35S promoter. Using a 20-minute infection time and a 5-day cultivation period, factors that optimized and demonstrated a high transformation efficiency were achieved. With these conditions, approximately 22-27% efficiency was observed for Agrobacterium-mediated transformation in lilies. After transformation with Agrobacterium, scales of lilies were transferred to MS medium without selective agents for 2 weeks. They were then placed on selection MS medium containing 5 mg/L PPT for a month of further selection and then cultured for another 4-8 weeks with a 4-week subculture regime on the same selection medium. PPT-resistant scales with shoots were successfully rooted and regenerated into plantlets after transferring into hormone-free MS medium. Also, most survived putatively transformed plantlets indicated the presence of the blpR gene by PCR analysis and showed a blue color indicating expression of the gus gene. In conclusion, when 100 scales of lily cv. "red flame" are transformed with Agrobacterium, approximately 22-27 transgenic plantlets can be produced following an optimized protocol. Therefore, this protocol can contribute to the lily breeding program in the future.