Browse > Article

Gene Disruption Using In Vivo and In Vitro Methylation in Streptomyces griseus  

Maeng Jin-Soo (Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health)
Bae Kyung-Sook (Laboratory of Insect Resources, Korea Research Institute of Bioscience and Biotechnology)
Kwak Jang-Yul (Laboratory of Insect Resources, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.9, 2006 , pp. 1472-1476 More about this Journal
Abstract
Previous study demonstrated that the restriction barrier of Streptomyces griseus is almost completely bypassed by the Streptomyces-E. coli shuttle vectors passed through the E. coli GM161 strain and methylated with AluI and HpaII methyltransferases. The same DNA methylation of the genomic DNA fragments cloned the nonreplicative vectors generated integrative transformation and gene disruption of their chromosomal counterparts at high efficiencies in S. griseus. This result indicated that the efficiency of gene disruption depends on the efficient transfer of the incoming DNA into bacterial hosts.
Keywords
Transformation; methylation; gene disruption; Streptomyces griseus; homologous recombination;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Anzai, H., Y. Kumada, O. Hara, T. Murakami, R. Itoh, E. Takano, S. Imai, A. Satoh, and K. Nagaoka. 1988. Replacement of Streptomyces hygroscopicus genomic segments with in vitro altered DNA sequences. J. Antibiot. (Tokyo) 41: 226-233   DOI
2 Gust, B, G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546
3 Kendrick, K. E. and J. C. Ensign. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155: 357-366
4 MacNeil, D. J. 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607-5612   DOI
5 Oh, S. H. and K. F. Chater. 1997. Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): Possible relevance to other organisms. J. Bacteriol. 179: 122-127   DOI
6 Ueda, K., C. W. Hsheh, T. Tosaki, H. Shinkawa, T. Beppu, and S. Horinouchi. 1998. Characterization of an A-factor-responsive repressor for amfR essential for onset of aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 180: 5085-5093
7 Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111   DOI   ScienceOn
8 Kieser, T. and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: Integrating vectors and gene replacement. Methods Enzymol. 204: 430-458   DOI
9 Kwak, J. and K. E. Kendrick. 1996. Bald mutants of Streptomyces griseus that prematurely undergo key events of sporulation. J. Bacteriol. 178: 4643-4650   DOI
10 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15:66-71   과학기술학회마을
11 Hillemann, D., A. Puhler, and W. Wohlleben. 1991. Gene disruption and gene replacement in Streptomyces via single stranded DNA transformation of integration vectors. Nucleic Acids Res. 19:727-731   DOI
12 McCue, L. A., J. Kwak, J. Wang, and K. E. Kendrick. 1996. Analysis of a gene that suppresses the morphological defect of bald mutants of Streptomyces griseus. J. Bacteriol. 178: 2867-2875   DOI
13 Hwang, E. I., B. S. Yun, S. W. Choi, J. S. Kim, S. J. Lim, J. S. Moon, S. H. Lee, and S. U. Kim. 2005. Isolation of sangivamycin from Streptomyces sp. A6497 and its herbicidal activity. J. Microbiol. Biotechnol. 15: 434-437   과학기술학회마을
14 Kwak, J., A. J. Dharmatilake, H. Jiang, and K. E. Kendrick. 2001. Differential regulation of ftsZ transcription during septation of Streptomyces griseus. J. Bacteriol. 183: 5092-5101   DOI
15 Wu, P.-C. 1994. Cloning, nucleotide sequence determination, and transcriptional analysis of the histidase structural gene from Streptomyces griseus. The Ohio State University, Columbus, OH
16 Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, U.K
17 Janssen, G. R. and M. J. Bibb. 1993. Derivatives of pUC18 that have Bglll sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133-134   DOI   ScienceOn
18 Kudo, N, K. Ueda, H. Ikeda, S. Omura, T. Beppu, and S. Horinouchi. 1994. Plasm id-mediated gene disruption in Streptomyces griseus. Actinomycetologica 8: 17-20   DOI   ScienceOn
19 Tautz, N., K. Kaluza, B. Frey, M. Jarsch, G. G. Schmitz, and C. Kessler. 1990. SgrAl, a novel class-II restriction endonuclease from Streptomyces griseus recognizing the octanucleotide sequence 5'-CR/CCGGYG-3' [corrected]. Nucleic Acids Res. 18: 3087   DOI   ScienceOn
20 Kwak, J., L. A. McCue, K. Trczianka, and K. E. Kendrick. 2001. Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus. J. Bacteriol. 183: 3004-3015   DOI   ScienceOn
21 Palmer, B. R. and M. G. Marinus. 1994. The dam and dcm strains of Escherichia coli -- A review. Gene 143: 1-12   DOI   ScienceOn
22 Babcock, M. J. and K. E. Kendrick. 1988. Cloning of DNA involved in sporulation of Streptomyces griseus. J. Bacterial. 170: 2802-2808   DOI
23 Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209: 243-248   DOI
24 Tomono, A., Y. Tsai, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2005. Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 187: 5595-5604   DOI   ScienceOn
25 Choi, S.-S., J. H. Kim, J.-H. Kim, D.-K. Kang, S.-S. Kang, and S.-K. Jong. 2006. Functional analysis of sprD gene encoding Streptomyces griseus protease D (SGPD) in Streptomyces griseus. J. Microbiol. Biotechnol. 16: 312-317   과학기술학회마을
26 Zotchev, S. B., H. Schrempf, and C. R. Hutchinson. 1995. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis. J. Bacteriol. 177: 4809-4812   DOI
27 Bickle, T. A. and D. H. Kruger. 1993. Biology of DNA restriction. Microbiol. Rev. 57: 434-450
28 Jiang, H. and K. E. Kendrick. 2000. Characterization of ssfR and ssgA, two genes involved in sporulation of Streptomyces griseus. J. Bacteriol. 182: 5521-5529   DOI
29 Jo, Y.-Y., J. Liu, Y. Y. Jin, Y.-Y. Yang, and J.-W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Streptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496   과학기술학회마을
30 Ohnishi, Y., J. W. Seo, and S. Horinouchi. 2002. Deprogrammed sporulation in Streptomyces. FEMS Microbiol. Lett. 216: 1 -7   DOI
31 Uguru, G. C., K. E. Stephens, J. A. Stead, J. E. Towle, S. Baumberg, and K. J. McDowall. 2005. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150   DOI   ScienceOn