• Title/Summary/Keyword: Gene regulatory Network

Search Result 87, Processing Time 0.023 seconds

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen;Kronenberg, Mitchell
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.67-72
    • /
    • 2014
  • The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

Screening for Metastatic Osteosarcoma Biomarkers with a DNA Microarray

  • Diao, Chun-Yu;Guo, Hong-Bing;Ouyang, Yu-Rong;Zhang, Han-Cong;Liu, Li-Hong;Bu, Jie;Wang, Zhi-Hua;Xiao, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1817-1822
    • /
    • 2014
  • Objective: The aim of this study was to screen for possible biomarkers of metastatic osteosarcoma (OS) using a DNA microarray. Methods: We downloaded the gene expression profile GSE49003 from Gene Expression Omnibus database, which included 6 gene chips from metastatic and 6 from non-metastatic OS patients. The R package was used to screen and identify differentially expressed genes (DEGs) between metastatic and non-metastatic OS patients. Then we compared the expression of DEGs in the two groups and sub-grouped into up-regulated and down-regulated, followed by functional enrichment analysis using the DAVID system. Subsequently, we constructed an miRNA-DEG regulatory network with the help of WebGestalt software. Results: A total of 323 DEGs, including 134 up-regulated and 189 down-regulated, were screened out. The up-regulated DEGs were enriched in 14 subcategories and most significantly in cytoskeleton organization, while the down-regulated DEGs were prevalent in 13 subcategories, especially wound healing. In addition, we identified two important miRNAs (miR-202 and miR-9) pivotal for OS metastasis, and their relevant genes, CALD1 and STX1A. Conclusions: MiR-202 and miR-9 are potential key factors affecting the metastasis of OS and CALD1 and STX1A may be possible targets beneficial for the treatment of metastatic OS. However, further experimental studies are needed to confirm our results.

Rheumatoid Fibroblast-like Synoviocytes Downregulate Foxp3 Expression by Regulatory T Cells Via GITRL/GITR Interaction

  • Kim, Sung Hoon;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.217-221
    • /
    • 2012
  • Fibroblast-like synoviocytes (FLS) colocalize with leukocyte infiltrates in rheumatoid synovia. Proinflammatory leukocytes are known to amplify inflammation by signaling to FLS, but crosstalk between FLS and regulatory T cells (Tregs) remains uncharacterized. To address this possibility, we cocultured FLS lines derived from arthritic mice with Tregs. FLS that expressed the ligand for glucocorticoid-induced TNF receptor family-related gene (GITR) decreased expression of Foxp3 and GITR in Tregs in a contact-dependent manner. This effect was abolished by blocking antibody to GITR. On the other hand, the Tregs caused the FLS to increase IL-6 production. These results demonstrate that inflamed FLS license Tregs to downregulate Foxp3 expression via the GITRL/GITR interaction while the Tregs induce the FLS to increase their production of IL-6. Our findings suggest that the interaction between FLS and Tregs dampens the anti-inflammatory activity of Tregs and amplifies the proinflammatory activity of FLS, thereby exacerbating inflammatory arthritis.

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Regulatory Network Analysis of MicroRNAs and Genes in Neuroblastoma

  • Wang, Li;Che, Xiang-Jiu;Wang, Ning;Li, Jie;Zhu, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7645-7652
    • /
    • 2014
  • Neuroblastoma (NB), the most common extracranial solid tumor, accounts for 10% of childhood cancer. To date, scientists have gained quite a lot of knowledge about microRNAs (miRNAs) and their genes in NB. Discovering inner regulation networks, however, still presents problems. Our study was focused on determining differentially-expressed miRNAs, their target genes and transcription factors (TFs) which exert profound influence on the pathogenesis of NB. Here we constructed three regulatory networks: differentially-expressed, related and global. We compared and analyzed the differences between the three networks to distinguish key pathways and significant nodes. Certain pathways demonstrated specific features. The differentially-expressed network consists of already identified differentially-expressed genes, miRNAs and their host genes. With this network, we can clearly see how pathways of differentially expressed genes, differentially expressed miRNAs and TFs affect on the progression of NB. MYCN, for example, which is a mutated gene of NB, is targeted by hsa-miR-29a and hsa-miR-34a, and regulates another eight differentially-expressed miRNAs that target genes VEGFA, BCL2, REL2 and so on. Further related genes and miRNAs were obtained to construct the related network and it was observed that a miRNA and its target gene exhibit special features. Hsa-miR-34a, for example, targets gene MYC, which regulates hsa-miR-34a in turn. This forms a self-adaption association. TFs like MYC and PTEN having six types of adjacent nodes and other classes of TFs investigated really can help to demonstrate that TFs affect pathways through expressions of significant miRNAs involved in the pathogenesis of NB. The present study providing comprehensive data partially reveals the mechanism of NB and should facilitate future studies to gain more significant and related data results for NB.

A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems

  • Kim, Hanhae;Joe, Anna;Lee, Muyoung;Yang, Sunmo;Ma, Xiaozhi;Ronald, Pamela C.;Lee, Insuk
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.166-174
    • /
    • 2019
  • Bacterial species in the genus Xanthomonas infect virtually all crop plants. Although many genes involved in Xanthomonas virulence have been identified through molecular and cellular studies, the elucidation of virulence-associated regulatory circuits is still far from complete. Functional gene networks have proven useful in generating hypotheses for genetic factors of biological processes in various species. Here, we present a genome-scale co-functional network of Xanthomonas oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/xoonet/), constructed by integrating heterogeneous types of genomics data derived from Xoo and other bacterial species. XooNet contains 106,000 functional links, which cover approximately 83% of the coding genome. XooNet is highly predictive for diverse biological processes in Xoo and can accurately reconstruct cellular pathways regulated by two-component signaling transduction systems (TCS). XooNet will be a useful in silico research platform for genetic dissection of virulence pathways in Xoo.