• Title/Summary/Keyword: Gene regulation

Search Result 2,207, Processing Time 0.039 seconds

The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice (C57BL/6 마우스에서 Retroviral 벡터를 이용한 Foxp3 유전자의 도입에 의한 Foxp3 단백의 발현 양상)

  • Hwang, Insun;Ha, Danbee;Bing, So Jin;Jeon, Kyong-Leek;Ahn, Ginnae;Kim, Dae Seung;Cho, Jinhee;Lim, Jaehak;Im, Sin-Hyeog;Hwang, Kyu-Kye;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.183-191
    • /
    • 2012
  • The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require $CD4^{+}CD25^{+}$ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.

Molecular Cloning and Characterization of Bovine CYP26A1 Promoter (소 CYP26A1 유전자 프로모터의 molecular cloning 및 특성)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • The retinoic acid (RA) plays an important role in the growth and development of many cells, and bioactive RA concentration is regulated by several enzymes, including CYP26A1. The expression of the CYP26A1 gene is regulated by RA, and the CYP26A1 gene is one of the candidates for RA-responsive genes. Although CYP26A1 genes are cloned from several animals, cloning of the CYP26A1 gene from cows has not been reported yet. The promoter region of CYP26A1 from cows was cloned by PCR and analyzed by sequence alignment with human and mouse CYP26A1. The RA-responsive element (RARE), DR-5 (ttggg), was located in this region and was perfectly conserved. The promoter region of bovine CYP26A1, which contains DR-5, was ligated to the luciferase reporter gene on transient transfection assays. The expression of CYP26A1-Luc promoter was activated by ATRA treatment in lung-derived mtCC cells. Co-transfection with RAR-α or -β with ATRA significantly activates the expression of CYP26A1-Luc promoter; however, it was less effective with either RAR-γ or RXR-γ. In addition, the endogenous gene expressions measured by Q-RT-PCR in mtCC cells were not significantly affected by ATRA treatment for 2 days; however, the expression of the endogenous CYP26A1 gene was diminished sharply at day 3 with ATRA treatment. In conclusion, the promoter region of bovine CYP26A1 contains conserved DR-5 RARE, which functions as a binding site for RAR-α or -β, and it is involved in the regulation of CYP26A1 gene expression and the control of RA signaling in mtCC cells.

Effects of Long-Term High-Fat Diet Feeding on Gene Expression of Inflammatory Cytokines in Mouse Adipose Tissue

  • Oh, Nu-Ri;Hwang, Ae-Rang;Jeong, Ja-In;Park, Sung-Hyun;Yang, Jin-Seok;Lee, Yong-Ho
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2012
  • This study was to investigate the effects of high-fat diet feeding for a very long period of time on gene expression of inflammatory cytokines in mouse adipose tissue and to determine whether caloric restriction (CR) or insulin sensitizer treatment changes the cytokine gene expressions even in obese mice fed a high-fat diet for a very long term-period. Gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) were examined by real-time PCR in subcutaneous abdominal adipose tissue (SubQ) from obese and non-obese male C57BL/6 mice at 16, 26, 36, 47, and 77 weeks of age on either normal diet (ND) or high-fat diet (HFD) after starting at 6 weeks of age. In addition, gene expression levels of TNF-${\alpha}$, IL-6 and MCP-1 were determined in SubQ before and after rosiglitazone treatment or CR on 47-week-old obese mice. The results demonstrated that gene expression levels of TNF-${\alpha}$, IL-6 and MCP-1 were significantly increased with aging in SubQ of mice in both groups of diet. MCP-1 gene expression of SubQ in all ages tested was significantly or marginally increased in mice on HFD compared with ND. While TNF-${\alpha}$ expression was significantly reduced by rosiglitazone, IL-6 and MCP-1 were significantly decreased by CR. The basic data in this study will be useful for characterizing the C57BL/6 mouse as an animal model of obesity induced by high-fat diet feeding for a very long period of time, and a better understanding of inflammatory cytokine regulation in diet induced obesity which may facilitate the development of new therapeutic strategies to prevent the complications of obesity.

Comparison among GGEx16, GGEx18 and gambitongseong-capsule for anti-obesity gene activity (GGEx16, GGEx18과 감비통성교낭(減肥通聖膠囊)의 항비만유전자 활성 비교)

  • Oh, Jaeho;Ahn, Ye Ji;Lee, Hye Rim;Lim, Hyesook;Lee, Hyunghee;Yoon, Michung;Shin, Soon Shik
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • Objectives : Gambigyeongsinhwan 16 (GGEx16), gambigyeongsinhwan 18 (GGEx18) and gambitongseong capsule are shown to be involved in the regulation of obesity. Therefore, the aim of this study was to compare the reporter activity of anti-obesity genes such as peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $PPAR{\delta}$ by GGEx16, GGEx18 and gambitongseong capsule. Methods : After NMu2Li liver cells, C2C12 skeletal muscle cells and 3T3-L1 preadipocytes were treated with GGEx16 (1 ${\mu}g/ml$), GGEx18 (1 ${\mu}g/ml$) and different concentrations of gambitongseong capsule, the transactivation of $PPAR{\alpha}$ and $PPAR{\delta}$ was measured by a luciferase reporter gene assay. Results : $PPAR{\alpha}$ reporter gene activity in NMu2Li liver cells and 3T3-L1 preadipocytes was significantly increased by GGEx16, GGEx18 and gambitongseong capsule compared with control, whereas $PPAR{\alpha}$ reporter gene activity in C2C12 skeletal muscle cells was significantly increased by GGEx18 only compared with control. Similarly, $PPAR{\delta}$ reporter gene activity in 3T3-L1 preadipocytes was also significantly increased by GGEx18 compared with control. $PPAR{\delta}$ reporter gene activity in C2C12 skeletal muscle cells was significantly increased by GGEx16 and GGEx18 compared with control although $PPAR{\delta}$ reporter gene activity in NMu2Li liver cells was not changed by these three formulas. Conclusions : These results suggest that all three formulas have the ability to stimulate $PPAR{\alpha}$ and $PPAR{\delta}$ transactivation in animal cell lines with high metabolic rates. In particular, this effects were most prominent in GGEx18-treated cells. In addition, it is likely that GGEx18 may be used as an effective anti-obesity composition.

Rat Gonadotropes and Somatotropes Express Growth Hormone Releasing Hormone Gene in the Pituitary (흰쥐 뇌하수체 Gonadotropes와 Somatotropes에서의 Growth Hormone Releasing Hormone 유전자 발현)

  • 이성호
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.189-196
    • /
    • 1998
  • Several lines of evidence indicate that some neuropeptides classically associated hypothalamus have been found in pituitary gland, suggesting the existence of local regulation of pituitary function. Among the hypothalamic releasing hormones, genes for TRH and GnRH are expressed in the rat anterior pituitary gland. The present study was carried out to investigate the expression of the GHRH gene in rat anterior pituitary and the pituitary-derived cell lines. The presence of GHRH transcripts in pituitary tissue was shown by 3'rapid amplification of cDNA end (3'-RACE) analysis. In reverse transcription-polymerase chain reaction (RT-PCR) study, GHRH cDNA fragments were amplified from two pituitary-derived cell lines, $\alpha$T3 cells originated from mouse gonadotrope and GH3 cells from rat somatolactotrope. Immunoreactive GHRH was detected in large and medium-sized pituitary cells by immunocytochemistry. Significant amounts of GHRH-like molecules were found in the GH3 cell extracts. In RNase protection assay, the level of pituitary GHRH mRNA was augmented by ovariectomy. These results demonstrate that GHRH gene is expressed in the rat gonadotropes and somatotropes, and suggest that the pituitary GHRH could be participated in the paracrine and/or autocrine regulation of cell proliferation, as well as promoting growth hormone secretion.

  • PDF

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

Isolation and Functional Analysis of the silA Gene That Controls Sexual Development in Response to Light in Aspergillus nidulans (Aspergillus nidulans의 광 조건하 유성분화에 관여하는 silA 유전자의 분리 및 기능분석)

  • Han, Sang-Yong;Ko, Jin-A;Kim, Jong-Hak;Han, Kyu-Yong;Han, Kap-Hoon;Han, Dong-Min
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • When a homothallic ascomycete Aspergillus nidulans is exposed to visible light, cleistothecial development is inhibited. The light response of development in A. nidulans implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development. Previously, mutants that could develop cleistothecia even in the presence of relatively intensive visible light were isolated and several complementation groups were identified. A gene that was able to complement the silA98 mutation, which was responsible for preferred cleistothecia development under visible light, was isolated from AMA-NotI genomic library. The silA gene retained in the 4.3 kb recovered genomic library DNA has an open reading frame (ORF) consisted of 2,388 bp nucleotides, interrupted by 3 introns and consequently encoding 795 amino acids. The putative SilA carries a ${Zn_2}{Cys_6}$ binuclear cluster motif at N terminus and shows high amino acid sequence similarity to Aro80p of Saccharomyces cerevisiae. Deletion mutants of silA showed a strong induction of sexual development under visible light, indicating that SilA is involved in the negative regulation of sexual development in response to the light.

Gonadotropin Regulation of Regulator of G Protein Signaling 2 (RGS-2) Expression in the Rat Ovary (백서 난소에서 성선자극호르몬에 의한 RGS-2의 발현 조절)

  • Lee, Yu-Il;Lee, Eun-Suk;Kim, Sun-Ae;Kim, Mi-Young;Cho, Moon-Kyoung;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • Objective: The purpose of the present study was to examine the hormonal regulation of RGS-2 in the rat ovary. Methods: Immature rats were injected with 10 IU of PMSG to induce multiple growth of preovulatory follicles and 10 IU of hCG to induce ovulation. Northern blot analysis performed for gene expression and in situ hybridization performed for mRNA localization. Results: Northern blot analysis revealed that pregnant mare's serum gonadotropin (PMSG) treatment did not affect RGS-2 mRNA levels. In contrast, human chorionic gonadotropin (hCG) treatment of PMSG-primed rats resulted in an increase in RGS-2 expression within $1{\sim}3\;h$. The major cell-types expressing RGS-2 mRNA were oocytes regardless of follicle size. Interestingly, hCG treatment caused the stimulation of RGS-2 gene expression in granulosa cells of preovulatory and growing follicles. In contrast, cell types expressing RGS-2 protein were theca cells regardless of hCG treatment. Like in vivo, treatment of preovulatory granulosa cells with LH in vitro stimulated RGS-2 levels within 1 h. Interestingly, GnRH antagonist II enhanced the stimulatory action of LH. Conclusion: The present study demonstrates the LH/hCG induction of RGS-2 in preovulatory granulosa cells and suggests a role of RGS-2 in Gq protein signaling pathway during ovulation.

Zygotic Expression of c-myc Gene in Mouse Early Embryos: Functional Role of c-myc Promoter (생쥐 초기배아에서 c-myc Proto-Oncogene Promoter의 기능적 활성화)

  • Park, Ki-Soo;Kang, Hae-Mook;Shim, Chan-seob;Sun, Woong;Kim, Jae-man;Lee, Young-Ki;Kim, Kyung-jin
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 1995
  • The c-myc proto-oncogene is Involved In the control of normal cell proliferation and differentiation of many cell lineages. Although it has heen suggested that c-myc may play an important role in the mammalian early development, it Is unclear whether the embryonic c-myc mRNA is originated from zygotic gene expression or stored maternal message. Thus, we have construded expression vectors, In which the 5, flanking sequences including c-myc promoter region and a large non-coding exon I are fused 'sith E. coli lacZ gene that encedes $\beta$-galactosldase as a reporter. As c-myc exon I contains a modulatory sequence, we designed t, vo types of vectors (pcmyc.Gall and pcmyc-Ga12) to examine the role of exon I in c-myc expression. The former contains the complete exon I and the later has a deletion in 40 bp of modulator sequence located In the exon I of c-myc These vectors were microInjected into fertilized one-cell embryos and $\beta$-galactosidase activity was examined by X-gal staining during early embryogenesis. $\beta$-galactosidase activity derived from c-myc promoter was decreased at two-cell stage. The expression level directed by pcmyc- Ga12 was similar to that of pcmyc-Gal1, indicating that the medulatory sequence in exon I may not be Involved at least In the regulation of embryonic c-myc expression. In summary, the present study indicates that the c-myc promoter is functional at the early stage embryo, and the regulation of c-myc expression is under the control of "zygotic" clock of preimplantation mouse embryos.e embryos.

  • PDF

Suppression of Human GD3 Synthase (hST8Sia I) Expression Induced by Retinoic Acid in Human Melanoma SK-MEL-2 Cells (흑색종세포주 SK-MEL-2에서 레티노이드에 의한 GD3합성효소(hST8Sia I)의 발현억제)

  • Kwon, Haw-Young;Kang, Nam-Young;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.655-661
    • /
    • 2010
  • To elucidate the mechanism underlying the suppressive regulation of hST8Sia I expression in retinoic acid (RA)-induced SK-MEL-2 cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5‘-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-kB, functions as the RA-repressive promoter in SK-MEL-2 cells. Site-directed mutagenesis and ChIP analyses indicated that the NF-kB binding site at -731 to -722 is crucial for the RA-induced repression of hST8Sia I in SK-MEL-2 cells. In addition, the transcriptional activity of hST8Sia I suppressed by RA in SK-MEL-2 cells was strongly inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and protein kinase C (PKC) inhibitor GO6976, as determined by RT-PCR and luciferase assay of hST8Sia I promoter containing the -1146 to -646 regions. These results suggest that RA markedly modulates transcriptional regulation of hST8Sia I gene expression through the PKC/ERK signal pathway in SK-MEL-2 cells.