• Title/Summary/Keyword: Gene ontology

Search Result 303, Processing Time 0.021 seconds

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows

  • Ruonan Gao;Qingchun Li;Meiyu Qiu;Su Xie;Xiaomei Sun;Tao Huang
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1336-1349
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. Methods: The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). Results: A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC]=0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. Conclusion: Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.

Gene Ontology Development and Implementation at the Saccharomyces Genome Database

  • Hong, E.L.;Weng, S.;Dolinski, K.;Balakrishnan, R.;Christie, K.R.;Costanzo, M.C.;Dwight, S.S.;Engel, S.R.;Fisk, D.G.;Hirschman, J.E.;Issel-Tarver, L.;Sethuraman, A.;Theesfeld, C.L.;Binkley, G.;Schroeder, M.;Dong, S.;Andrada, R.;Botstein, D.;Cherry, J.M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2003.06a
    • /
    • pp.95-102
    • /
    • 2003
  • PDF

Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

  • Zheng, Zhuang-Li;Qiu, Xue-Hong;Han, Ri-Chou
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.

DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

  • Kim, Hong-Il;Park, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.190-200
    • /
    • 2016
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA micro-array analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated ($<\;-2\;log_2$ fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong;Li, Wufeng;Du, Min;Wu, Meng;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2015
  • Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

Bioinformatics Analysis Reveals Significant Genes and Pathways to Targetfor Oral Squamous Cell Carcinoma

  • Jiang, Qian;Yu, You-Cheng;Ding, Xiao-Jun;Luo, Yin;Ruan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2273-2278
    • /
    • 2014
  • Purpose: The purpose of our study was to explore the molecular mechanisms in the process of oral squamous cells carcinoma (OSCC) development. Method: We downloaded the affymetrix microarray data GSE31853 and identified differentially expressed genes (DEGs) between OSCC and normal tissues. Then Gene Ontology (GO) and Protein-Protein interaction (PPI) networks analysis was conducted to investigate the DEGs at the function level. Results: A total 372 DEGs with logFCI >1 and P value < 0.05 were obtained, including NNMT, BAX, MMP9 and VEGF. The enriched GO terms mainly were associated with the nucleoplasm, response to DNA damage stimuli and DNA repair. PPI network analysis indicated that GMNN and TSPO were significant hub proteins and steroid biosynthesis and synthesis and degradation of ketone bodies were significantly dysregulated pathways. Conclusion: It is concluded that the genes and pathways identified in our work may play critical roles in OSCC development. Our data provides a comprehensive perspective to understand mechanisms underlying OSCC and the significant genes (proteins) and pathways may be targets for therapy in the future.

TMA-OM(Tissue Microarray Object Model)과 주요 유전체 정보 통합

  • Kim Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.30-36
    • /
    • 2006
  • Tissue microarray (TMA) is an array-based technology allowing the examination of hundreds of tissue samples on a single slide. To handle, exchange, and disseminate TMA data, we need standard representations of the methods used, of the data generated, and of the clinical and histopathological information related to TMA data analysis. This study aims to create a comprehensive data model with flexibility that supports diverse experimental designs and with expressivity and extensibility that enables an adequate and comprehensive description of new clinical and histopathological data elements. We designed a Tissue Microarray Object Model (TMA-OM). Both the Array Information and the Experimental Procedure models are created by referring to Microarray Gene Expression Object Model, Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE), and the TMA Data Exchange Specifications (TMA DES). The Clinical and Histopathological Information model is created by using CAP Cancer Protocols and National Cancer Institute Common Data Elements (NCI CDEs). MGED Ontology, UMLS and the terms extracted from CAP Cancer Protocols and NCI CDEs are used to create a controlled vocabulary for unambiguous annotation. We implemented a web-based application for TMA-OM, supporting data export in XML format conforming to the TMA DES or the DTD derived from TMA-OM. TMA-OM provides a comprehensive data model for storage, analysis and exchange of TMA data and facilitates model-level integration of other biological models.

  • PDF

Web-Based Computational System for Protein-Protein Interaction Inference

  • Kim, Ki-Bong
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.459-470
    • /
    • 2012
  • Recently, high-throughput technologies such as the two-hybrid system, protein chip, Mass Spectrometry, and the phage display have furnished a lot of data on protein-protein interactions (PPIs), but the data has not been accurate so far and the quantity has also been limited. In this respect, computational techniques for the prediction and validation of PPIs have been developed. However, existing computational methods do not take into account the fact that a PPI is actually originated from the interactions of domains that each protein contains. So, in this work, the information on domain modules of individual proteins has been employed in order to find out the protein interaction relationship. The system developed here, WASPI (Web-based Assistant System for Protein-protein interaction Inference), has been implemented to provide many functional insights into the protein interactions and their domains. To achieve those objectives, several preprocessing steps have been taken. First, the domain module information of interacting proteins was extracted by taking advantage of the InterPro database, which includes protein families, domains, and functional sites. The InterProScan program was used in this preprocess. Second, the homology comparison with the GO (Gene Ontology) and COG (Clusters of Orthologous Groups) with an E-value of $10^{-5}$, $10^{-3}$ respectively, was employed to obtain the information on the function and annotation of each interacting protein of a secondary PPI database in the WASPI. The BLAST program was utilized for the homology comparison.