DOI QR코드

DOI QR Code

Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

  • Zheng, Zhuang-Li (Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute) ;
  • Qiu, Xue-Hong (Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute) ;
  • Han, Ri-Chou (Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute)
  • Received : 2014.09.10
  • Accepted : 2015.02.09
  • Published : 2015.03.31

Abstract

A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.

Keywords

References

  1. Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 2005;96:555-61. https://doi.org/10.1016/j.jep.2004.10.009
  2. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 2013;93:863-9. https://doi.org/10.1016/j.lfs.2013.09.030
  3. Xie CY, Gu ZX, Fan GJ, Gu FR, Han YB, Chen ZG. Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture. Appl Biochem Biotechnol 2009;158:483-92. https://doi.org/10.1007/s12010-009-8567-2
  4. Zheng Z, Huang C, Cao L, Xie C, Han R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 2011;115:265-74. https://doi.org/10.1016/j.funbio.2010.12.011
  5. Hong IP, Kang PD, Kim KY, Nam SH, Lee MY, Choi YS, Kim NS, Kim HK, Lee KG, Humber RA. Fruit body formation on silkworm by Cordyceps militaris. Mycobiology 2010;38:128-32. https://doi.org/10.4489/MYCO.2010.38.2.128
  6. Li TH, Lin QY, Song B, Huang H, Zhong YJ, Shen YH. The cultivation methold of Cordyceps militaris fruiting body by infecting Tenebrio molitor pupae. China Patent No. 200510101348.0. Beijing: China Government; 2005.
  7. Han RC, Liu XF, Cao L, Chen JH. The cultivation methold of Cordyceps militaris fruiting body by infecting Gallerai mellifera larvae. China Patent No. 200610123355.5. Beijing: China Government; 2006.
  8. Lu JM, Zeng ZJ, He HQ. Culture technique of Cordyceps militaris on artificial media. Guangdong Agric Sci 2005;2:88-9.
  9. Wang C, Butt TM, St. Leger RJ. Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 2005;151(Pt 10):3223-36. https://doi.org/10.1099/mic.0.28148-0
  10. Wang CS, St. Leger RJ. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 2007;6:808-16. https://doi.org/10.1128/EC.00409-06
  11. St. Leger RJ, Bidochka MJ, Roberts DW. Isoforms of the cuticle-degrading Pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae. Arch Biochem Biophys 1994;313:1-7. https://doi.org/10.1006/abbi.1994.1350
  12. Tiago PV, Fungaro MH, Furlaneto MC. Cuticle-degrading proteases from the entomopathogen Metarhizium flavoviride and their distribution in secreted and intracellular fractions. Lett Appl Microbiol 2002;34:91-4. https://doi.org/10.1046/j.1472-765x.2002.01064.x
  13. Zhang Y, Liu X, Wang M. Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Res Microbiol 2008;159:462-9. https://doi.org/10.1016/j.resmic.2008.04.004
  14. Mao XB, Zhong JJ. Hyperproduction of cordycepin by twostage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 2004;20:1408-13. https://doi.org/10.1021/bp049765r
  15. Jiapeng T, Yiting L, Li Z. Optimization of fermentation conditions and purification of cordycepin from Cordyceps militaris. Prep Biochem Biotechnol 2014;44:90-106. https://doi.org/10.1080/10826068.2013.833111
  16. Kang C, Wen TC, Kang JC, Meng ZB, Li GR, Hyde KD. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. Sci World J 2014:2014:510627.
  17. Haddad R, Milagre HM, Catharino RR, Eberlin MN. Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. Anal Chem 2008;80:2744-50. https://doi.org/10.1021/ac702216q
  18. Li Z, Liu AY, Liang ZQ. Biological activity and determination method of cordycepin. Acta Edulis Fungi 2002;9:57-62.
  19. Li A, Begin M, Kokurewicz K, Bowden C, Horgen PA. Inheritance of strain instability (sectoring) in the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 1994;60:2384-8.
  20. Ryan MJ, Bridge PD, Smith D, Jeffries P. Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 2002;93:163-8. https://doi.org/10.1046/j.1365-2672.2002.01682.x
  21. Lin QQ, Qiu XH, Zheng ZL, Xie CH, Xu ZF, Han RC. Characteristics of the degenerate strains of Cordyceps militaris. Mycosystema 2010;29:670-7.
  22. Li L, Pischetsrieder M, St. Leger RJ, Wang C. Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fungal Genet Biol 2008;45:1300-6. https://doi.org/10.1016/j.fgb.2008.06.003
  23. Pause A, Sonenberg N. Helicases and RNA unwinding in translation. Curr Opin Struct Biol 1993;3:953-9. https://doi.org/10.1016/0959-440X(93)90161-D
  24. Rymond BC, Rosbash M. Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR, editors. The molecular and cellular biology of the yeast Saccharomyces: gene expression. New York: Cold Spring Harbor; 1992. p. 143-92.
  25. Daugeron MC, Linder P. Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA 1998;4:566-81. https://doi.org/10.1017/S1355838298980190
  26. Kressler D, de la Cruz J, Rojo M, Linder P. Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol Cell Biol 1998;18:1855-65. https://doi.org/10.1128/MCB.18.4.1855
  27. Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776-88. https://doi.org/10.1038/nrc1994
  28. Gallego M, Virshup DM. Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 2005;17:197-202. https://doi.org/10.1016/j.ceb.2005.01.002
  29. Mylonakis E, Idnurm A, Moreno R, El Khoury J, Rottman JB, Ausubel FM, Heitman J, Calderwood SB. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol Microbiol 2004;54:407-19. https://doi.org/10.1111/j.1365-2958.2004.04310.x
  30. Calado RT, Brudno J, Mehta P, Kovacs JJ, Wu C, Zago MA, Chanock SJ, Boyer TD, Young NS. Constitutional telomerase mutations are genetic risk factors for cirrhosis. Hepatology 2011;53:1600-7. https://doi.org/10.1002/hep.24173
  31. Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, Ng MH, Ho CY, Cheng SH, Lai PB, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 2011;71:4138-49. https://doi.org/10.1158/0008-5472.CAN-10-4274
  32. Porika M, Tippani R, Bollam SR, Panuganti SD, Thamidala C, Abbagani S. Serum human telomerase reverse transcriptase: a novel biomarker for breast cancer diagnosis. Int J Clin Oncol 2011;16:617-22. https://doi.org/10.1007/s10147-011-0230-6
  33. Dreveny I, Andryushkova AS, Glieder A, Gruber K, Kratky C. Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity. Biochemistry 2009;48:3370-7. https://doi.org/10.1021/bi802162s
  34. Ferreira P, Hernandez-Ortega A, Herguedas B, Martinez AT, Medina M. Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. J Biol Chem 2009;284:24840-7. https://doi.org/10.1074/jbc.M109.011593
  35. Romero E, Ferreira P, Martinez AT, Martinez MJ. New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. Biochim Biophys Acta 2009;1794:689-97. https://doi.org/10.1016/j.bbapap.2008.11.013
  36. Albrecht M, Lengauer T. Pyranose oxidase identified as a member of the GMC oxidoreductase family. Bioinformatics 2003;19:1216-20. https://doi.org/10.1093/bioinformatics/btg140