• Title/Summary/Keyword: Gene modification

Search Result 344, Processing Time 0.027 seconds

Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

  • Zhao, Xinxia;Ni, Wei;Chen, Chuangfu;Sai, Wujiafu;Qiao, Jun;Sheng, Jingliang;Zhang, Hui;Li, Guozhong;Wang, Dawei;Hu, Shengwei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.413-418
    • /
    • 2016
  • Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

Streptozotocin, an O-GlcNAcase Inhibitor, Stimulates $TNF\alpha -Induced$ Cell Death

  • Yang Won-Ho;Ju Jung-Won;Cho Jin Won
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • O-GlcNAcylation of p53 has been already identified and reported, but the function of O-GlcNAc on p53 has not been studied well. In this report, the general function of O-GlcNAc modification on p53 has been investigated using mouse fibroblast cell, L929. When streptozotocin (STZ), a non-competitive O-GlcNAcase inhibitor was treated to L929, O-GlcNAc modification level was dramatically increased on nucleocytoplasmic proteins, including p53. Because it has been already reported that $TNF\alpha$ induced the production of p53 in L929, $TNF\alpha$ was treated to obtain more p53. Approximately two times more amount of p53 was found from the cells treated STZ and $TNF\alpha$ simultaneously compared to the cell treated $TNF\alpha$ alone. The p53 increment in the presence of STZ was not caused by the induction of p53 gene expression. When new production of p53 induced by the $TNF\alpha$ was inhibited by the treatment of cycloheximide, O-GlcNAc modification decreased and phosphorylation increased on pre-existing p53 after $TNF\alpha$ treatment. But in the presence of STZ and $TNF\alpha$ at the same time, more O-GlcNAcylation occurred on p53, The level of ubiquitination on p53 was also reduced in the presence of STZ. Approximately three times less amount of Mdm2 bound to this hyperglycosylated p53. From this result it might be concluded that treatment of STZ to inhibit O-GlcNAcase increased O-GlcNAc modification level on p53 and the increment of O-GlcNAc modification stabilized p53 from ubiquitin proteolysis system.

  • PDF

Molecular Application in Psychiatry (정신과의 분자생물학 적용)

  • Choi, Ihn-Geun
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • The development of molecular biology has brought many changes in psychiatry. Molecular biology makes us possible to know the cause of mental disorders that provide the way to prevent the disorders, and to develop various accurate diagnostic and treatment methods for mental disorders. The author discusses the concept, cause, and treatment of mental disorders in the aspect of molecular biology. Importing the methods of molecular biology into psychiatry, we can anticipate to get a number of the goals of psychiatric genetics, including identification of specific susceptibility genes, clarification of the pathophysiological processes whereby these genes lead to symptoms, establishment of epigenetic factors that interact with these genes to produce disease, validation of nosological boundaries that more closely reflect the actions of these genes, and development of effective preventive and therapeutic interventions based on genetic counseling, gene therapy, and modification of permissive or protective environmental influences. In addition to their capacity to accelerate the discovery of new molecules participating in the nervous system's response to disease or to self-administered drugs, molecular biological strategies can also be used to determine how critical a particular gene product may be in mediating a cellular event with behavioral importance. Molecular biology probably enables us discover the environmental factors of mental disorders and allow rational drug design and gene therapies for mental disorders, by isolation of gene products that facilitate a basic understanding of the pathogenesis of these disorders. A specific genetic linkage may suggest a novel class of drugs that has not yet been tried. With respect to gene therapy, the hypothetical method would use a gene delivery system, most likely a modified virus, to insert a functional copy of a mutant gene into those brain cells that require the gene for normal function.

  • PDF

Cloning and Characterization of Liver cDNAs That Are Differentially Expressed between Chicken Hybrids and Their Parents

  • Sun, Dong-Xiao;Wang, Dong;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1684-1690
    • /
    • 2005
  • Using mRNA differential display technique, we investigated differential gene expression in hybrids relative to their parents in a diallel cross involving four chicken breeds in order to provide an insight into the molecular basis of heterosis in chicken. The results indicated that there was extensive differential gene expression between chicken F1 hybrids and their parents which was classified into four kinds of patterns as following: (1) bands only detected in hybrid F1; (2) bands only absent in hybrid F1; (3) bands only detected in parent P1 or P2; (4) bands absent in parent P1 or P2. Forty-two differentially expressed cDNAs were cloned and sequenced, and their expression patterns were confirmed by Reverse-Northern dot blot. Sequence analysis and database searches revealed that genes showed differential expression between hybrid and parents were regulatory and functional genes involved in metabolism, mRNA splicing, transcriptional regulation, cell cycles and protein modification. These results indicated that hybridization between two parents can cause changes in expression of a variety of genes. In conclusion, that the altered pattern of gene expression in hybrids may be responsible for heterosis in chickens.

Mouse phenogenomics, toolbox for functional annotation of human genome

  • Kim, Il-Yong;Shin, Jae-Hoon;Seong, Je-Kyung
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.79-90
    • /
    • 2010
  • Mouse models are crucial for the functional annotation of human genome. Gene modification techniques including gene targeting and gene trap in mouse have provided powerful tools in the form of genetically engineered mice (GEM) for understanding the molecular pathogenesis of human diseases. Several international consortium and programs are under way to deliver mutations in every gene in mouse genome. The information from studying these GEM can be shared through international collaboration. However, there are many limitations in utility because not all human genes are knocked out in mouse and they are not yet phenotypically characterized by standardized ways which is required for sharing and evaluating data from GEM. The recent improvement in mouse genetics has now moved the bottleneck in mouse functional genomics from the production of GEM to the systematic mouse phenotype analysis of GEM. Enhanced, reproducible and comprehensive mouse phenotype analysis has thus emerged as a prerequisite for effectively engaging the phenotyping bottleneck. In this review, current information on systematic mouse phenotype analysis and an issue-oriented perspective will be provided.

BRCA1 Promoter Hypermethylation Signature for Early Detection of Breast Cancer in the Vietnamese Population

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9607-9610
    • /
    • 2014
  • Breast cancer, a leading cause of death among women in most countries worldwide, is rapidly increasing in incidence in Vietnam. One of biomarkers is the disruption of the genetic material including epigenetic changes like DNA methylation. With the aim of finding hypermethylation at CpG islands of promoter of BRCA1 gene, belonged to the tumor suppressor gene family, as the biomarker for breast cancer in Vietnamese population, sensitive methyl specific PCR (MSP) was carried out on 115 samples including 95 breast cancer specimens and 20 normal breast tissues with other diseases which were obtained from Ho Chi Minh City Medical Hospital, Vietnam. The result indicated that the frequency of BRCA1 hypermethylation reached 82.1% in the cases (p<0.001). In addition, the DNA hypermethylation of this candidate gene increased the possibility to be breast cancer with high incidence via calculated odd ratios (p<0.05). In conclusion, hypermethylation of this candidate gene could be used as the promising biomarker application with Vietnamese breast cancer patients.

Optimization of Gene Delivery Mediated by Lipoplexes and Electroporation into Mouse Mesenchymal Stem Cells

  • Kim, Jong-Chul;Kim, Hong-Sung;Lee, Yeon-Kyung;Kim, Jung-Seok;Park, Sang-Il;Jung, Hwa-Yeon;Park, Yong-Serk
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • Recently, mesenchymal stem cells (MSCs) began to be utilized as a vehicle for ex vivo gene therapy based on their plasticity. Effective and safe transfection of therapeutic genes is a critical step for genetic modification of MSCs. Therefore, optimization of in vitro gene delivery into MSCs is essential to provide genetically modified stem cells. In this study, various cationic liposomes, O,O'-dimyristyl-N-lysyl aspartate (DMKD), DMKD/cholesterol, O,O'-dimyristyl-N-lysyl glutamate (DMKE), DMKE/cholesterol, and N-[1-(2,3-dioleoyloxy)]-N,N,N-trimethylammonium propane methyl sulfate (DOTAP)/cholesterol, were mixed with plasmid DNA encoding luciferase (pAAV-CMV-Luc) at varied ratios, and then used for transfection to MSCs under varied conditions. The MSCs were also transfected by electroporation under varied conditions, such as voltage, pulse length, and pulse interval. According to the experimental results, electroporation-mediated transfection was more efficient than cationic liposome-mediated transfection. The best MSC transfection was induced by electroporation 3 times pulses for 2 ms at 200 V with 10 seconds of a pulse interval.

  • PDF

Analysis of polymorphic region of GAM-1 gene in Plasmodium vivax Korean isolates

  • Kho, Weon-Gyu;Chung, Joon-Yong;Hwang, Ui-Wook;Chun, Jin-Ho;Park, Yeong-Hong;Chung, Woo-Chul
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.4
    • /
    • pp.313-318
    • /
    • 2001
  • The identification , characterization and quantification of Plasmodium sp. genetic polymorphism are becoming increasingly important in the vaccine development. We investigated polymorphism of Plasmodium vivax GAM-1 (PvGAM-1) gene in 30 Korean isolates. The polymorphic region of the PvGAM-1 gene, corresponding to nt 3792-4029, was amplified using polymerase chain reaction (PCR) followed by sequencing. All of the P. viuax Korean isolates were one type of GAM-1 gene, which were identical to that of the Belem strain. It is suggested that PvGAM-1 could not be used as a genetic marker for identifying or classifying P. vivax Korean isolates. It revealed that the polymorphic pattern as acquired basically by duplication and modification or deletion event of a 33 bp-motif fragment ended by poly guanine (G) and that there were at least three complete and one partial 33 Up-motif sequences within the polymorphic region in the longest cases such as those of South Korean and Belem isolates. In addition, we clustered P. vivax isolates with parsimonious criteria on the basis of PvGAM- 1 polymorphic patterns (insertion/deletion patterns) .

  • PDF

Effect of Thyroid Hormone on the Gene Expression of Myostatin in Rat Skeletal Muscle

  • Ma, Yi;Chen, Xiaoqiang;Li, Qing;An, Xiaorong;Chen, Yongfu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.275-281
    • /
    • 2009
  • Modification of thyroid hormone levels has a profound effect on skeletal muscle differentiation, predominantly through direct regulation involving thyroid hormone receptors. Nevertheless, little is known about the regulation of myostatin gene expression in skeletal muscle due to altered concentrations of thyroid hormone. Thus, the goal of our study was to find out whether altered thyroid states could change the gene expression of myostatin, the most powerful inhibitor of skeletal muscle development. A hyperthyroid state was induced in rats by daily injections of L-thyroxine 20 mg/100 g body weight for 14 days, while a hypothyroid state was induced in another group of rats by administering methimazole (0.04%) in drinking water for 14 days. After a period of 14 days of L-thyroxine treatment we observed a significant increase of myostatin expression both in mRNA and protein level. However, decreased expression of myostatin mRNA and protein were observed in hypothyroid rats. Furthermore, our studies demonstrated that the upregulation of myostatin gene expression might be responsible for the loss of body weight induced by altered thyroid hormone levels. We concluded that myostatin played a role in a metabolic process in muscle that was regulated by thyroid hormone.

Epigenetics: general characteristics and implications for oral health

  • Seo, Ji-Yun;Park, Yoon-Jung;Yi, Young-Ah;Hwang, Ji-Yun;Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun;Seo, Deog-Gyu
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.