• Title/Summary/Keyword: Gene modification

Search Result 344, Processing Time 0.034 seconds

Molecular Mechanism of Plant Immune Response (식물체의 면역반응 기작)

  • Kwon Tack-Min;Nam Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.73-83
    • /
    • 2005
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products and sequential signal transduction pathways activating defense responses are rapidly triggered. As a results, not only exhibit a resistance against invading pathogens but also plants maintain the systemic acquired resistance (SAR) to various other pathogens. This molecular interaction between pathogen and plant is commonly compared to innate immune system of animal. Recent studies arising from molecular characterization of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on molecular mechanism of gene-for-gene interaction. Furthermore, new technologies of genomics and proteomics make it possible to monitor the genome-wide gene regulation and protein modification during activation of disease resistance, expanding our ability to understand the plant immune response and develop new crops resistant to biotic stress.

RNA Modification and Its Implication in Plant Pathogenic Fungi

  • Jeon, Junhyun;Lee, Song Hee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.505-511
    • /
    • 2021
  • Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.

Retroviral Gene Expression in Spermatogonial Stem Cells during Long-term Culture

  • Jeong, Dong Kee;Griswold, Michael D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1015-1022
    • /
    • 2007
  • The spermatogonial stem cell (SSCs) is unique in that it is the only cell in the adult male that can contribute genes to a subsequent generation. Permanent modification of the germ cell line may be realized if stem cells could be cultured, transfected with unique genes, and then transplanted into recipient testes. We developed a culture system that supported long-term viability of SSCs. We used a retrovirus vector (pMSCV including ${\beta}$-galactosidase) to stably transfect spermatogonia following long-term culture using the system developed. Expression of the reporter gene ${\beta}$-galactosidase controlled by the retroviral vector was stable in long-term cultured SSCs. We confirmed the retroviral-mediated ${\beta}$-galactsidase gene could be expressed in germ cells in recipient mice following SSCs transplantation.

A New Stereo Matching Using Compact Genetic Algorithm (소형 유전자 알고리즘을 이용한 새로운 스테레오 정합)

  • 한규필;배태면;권순규;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

The Association between Codon 192 Polymorphism of Paraoxonase/arylesterase Gene and Plasma HDL-cholesterol level in Korean Population

  • Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Om, Ae-Son;Lee, Chung-Choo
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.9-13
    • /
    • 2001
  • Essential hypertension is considered to be a multifactorial disease that is influenced not only by environmental factors but also by genetic factors. Genes involved in lipoprotein synthesis, modification and metabolism are candidates for essential hypertension. The purpose of this study was to estimate gene frequencies of paraoxonase/arylesterase (PON1) gene in Korean population and investigate the relationship between genotypes of this gene and essential hypertension or cardiovascular risk factors. In order to estimate the genotype frequencies, Alw I RFLP of PON1 gene was used as genetic marker. There were no significant differences in allele and genotype frequencies between normotensives and essential hypertensives, respectively. However, Alw I RELP of PON1 gene were significantly associated with plasma HDL-cholesterol level in Korean population (one-way ANOVA test, p=0.008). Therefore, our result suggest that this RFLP of PON1 gene may be protective marker on cardiovascular disease in Korean population.

  • PDF

Effect of Lipid Compositions on Gene Transfer into 293 Cells Using Sendai F/HN-virosomes

  • Kim, Hong-Sung;Park, Yong-Serk
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.459-464
    • /
    • 2002
  • Fusogenic liposomes that incorporate Sendai virus envelope proteins, so-called Sendai virosomes, have been developed for in vitro and in vivo genetic modification of animal cells. In this study, several different virosomes of varying lipid compositions were formulated and their in vitro gene-transfer efficiencies compared. The virosomes were prepared by quantitative reconstitution of the Sendai envelope, fusion (F) and hemagglutinin-neuraminidase (HN) proteins into liposomal vesicles. Virosomes that contained luciferase reporter genes were tested in 293 transformed human kidney cells. F/HN-virosomes that were prepared with an artificial Sendai viral envelope (ASVE-virosomes) or phosphatidylserine (PS-virosomes) exhibited an 8- or 6-fold higher gene-transfer efficiency than cationic liposomes that were made with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). F/HN-virosomes that were prepared with phosphatidic acid (PA-virosomes) instead of PS were less efficient in gene transfer than either ASVE- or PS-virosomes. In addition, the genetransfer capability of ASVE- and PS-virosomes was maximal at a $Ca^{2+}$ concentration of 510 mM. These results suggest that the incorporated lipid components significantly affect the in vitro gene transfer that is mediated by Sendai F/HN-virosomes.

Proteomic Approach to Aging Research

  • Kim, Dong-Su
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2000.06a
    • /
    • pp.9-10
    • /
    • 2000
  • The aging process is multifactorial and results from the combined effects of inherited(genetic) and acquired factors including life style, food habits, physical activity, and diseases. That give rise to the various approaches in aging. We are trying to study biological changes with aging, In detail we are focused on gene and protein function accompanied by normal or abnormal aging process, especially our efforts are aimed at revealing the functional relationship of proteins in aging as a final product of gene. We expect that proteomic approach to the study of protein function involved in aging should give us variety of integrated data to understand biological changes of long lived lives, We have applied expression proteomics to rat liver bred in dietary restriction or in at libitum to elucidate the effects of food habit on aging. Expression proteomics shows us protein profile in a selected tissue or cells as a whole and gives us the information about protein expression level, posttranslational modification and degenerative modification of expressed proteins. Comparative analysis of young and old rat liver by two dimensional gels shows that gene expression of several proteins was down regulated in old rats and some protein expression level is increased with aging. Dietary restriction slows down these changes of gene expression and in some proteins there's no difference in protein expression level at same ages in comparison with rats bred in at libitum. About forty protein was identified by peptide mass fingerprint with MALDI-TOF and rest of the protein of interest is in the course of identification, Also we are trying to make mitochondrial and cytosolic proteom reference map. These suborganelle proteom map will gives us the information about low abundance proteins and cellular localization of proteins. Proteomics is a growing methodology to study biological system. High throughput qualitative and qualitative aspect of this approach will gives us large amount of integrated information and speed up our understanding about biological system

  • PDF

Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng

  • Choi, Han Suk;Koo, Hyo Bin;Jeon, Sung Won;Han, Jung Yeon;Kim, Joung Sug;Jun, Kyong Mi;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.505-514
    • /
    • 2022
  • Background: The roots of Panax ginseng contain two types of tetracyclic triterpenoid saponins, namely, protopanaxadiol (PPD)-type saponins and protopanaxatiol (PPT)-type saponins. In P. ginseng, the protopanaxadiol 6-hydroxylase (PPT synthase) enzyme catalyses protopanaxatriol (PPT) production from protopanaxadiol (PPD). In this study, we constructed homozygous mutant lines of ginseng by CRISPR/Cas9-mediated mutagenesis of the PPT synthase gene and obtained the mutant ginseng root lines having complete depletion of the PPT-type ginsenosides. Methods: Two sgRNAs (single guide RNAs) were designed for target mutations in the exon sequences of the two PPT synthase genes (both PPTa and PPTg sequences) with the CRISPR/Cas9 system. Transgenic ginseng roots were generated through Agrobacterium-mediated transformation. The mutant lines were screened by ginsenoside analysis and DNA sequencing. Result: Ginsenoside analysis revealed the complete depletion of PPT-type ginsenosides in three putative mutant lines (Cr4, Cr7, and Cr14). The reduction of PPT-type ginsenosides in mutant lines led to increased accumulation of PPD-type ginsenosides. The gene editing in the selected mutant lines was confirmed by targeted deep sequencing. Conclusion: We have established the genome editing protocol by CRISPR/Cas9 system in P. ginseng and demonstrated the mutated roots producing only PPD-type ginsenosides by depleting PPT-type ginsenosides. Because the pharmacological activity of PPD-group ginsenosides is significantly different from that of PPT-group ginsenosides, the new type of ginseng mutant producing only PPD-group ginsenosides may have new pharmacological characteristics compared to wild-type ginseng. This is the first report to generate target-induced mutations for the modification of saponin biosynthesis in Panax species using CRISPR-Cas9 system.

M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation

  • Kwon, Jeongwoo;Jo, Yu-Jin;Yoon, Seung-Bin;You, Hyeong-ju;Youn, Changsic;Kim, Yejin;Lee, Jiin;Kim, Nam-Hyung;Kim, Ji-Su
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of prem-RNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.

RAS inhibitor를 이용한 항암제의 개발에 관하여

  • 어미숙
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.32-35
    • /
    • 1993
  • ras는 활성화 형태인 GTP bound form과 비활성화 형태인 GDP bound form의 두 형태로 존재하며 두 형태를 매개하는 regulatory protein들에 의해 그 activity가 조절된다. 또한 ras는 GTP와 GDP에 강한 친화성이 있으며 세포내에는 GTP보다 GDP가 더 많이 있어서 평소에는 ras가 GDP와 결합하고 있다가 활성화될때만 GTP와 결합하는 것으로 추정된다. GDP bound ras는 guanine nucloetide exchange protein(GEP)에 의해 활성화된 GTP bound form으로 전환되며 ras의 기능이 발휘된 후에는 GTPase activating protein(GAP)에 의해 비활성화된다. Yeast의 경우 IRA1과 2의 product가 GAP의 역할을 하는 것으로 알려져 있고 CDC25 gene의 product가 GEP의 기능을 담당하는 것으로 알려져 있다. NF1 gene은 Von Recklinghausen Neurofibromatosis Type I 질병을 가진 환자에게서 발견되었는데 부분적으로 sequencing한 결과에 따르면 yeast의 IRA1/2, mammalian GAP gene product와 protein homology가 높은 것으로 나타났다. Yeast의 경우 IRA1/2 gene의 손실이나 mammalian ras gene의 transformation으로 인한 heat shock sensitivity가 NF1 gene(2,3) 혹은 GAP(4)의 expression으로 suppression된 것으로 보아 NF1이 GAP protein으로서 ras를 불활성화 시킨다는 것이 판명되었다. 결론적으로 ras의 활성은 GTP bound 혹은 GDP bound의 양쪽형태를 이동하면서 조절되는데 이 기능은 GAP과 GEP 또는 그의 유사 protein들에 의해 수행되며 이러한 regulatory protein들은 growth factor, cytokine 그리고 protein kinase 같은 signal에 의해 활성화된다고 생각된다. 본 총설에서는 ras protein의 여러가지 성질보다는 ras의 modification과 관련하여 항암제로 사용할 수 있는 ras에 specific한 약품개발의 가능성과 현재 알려진 ras의 inhibitor를 중심으로 논하고자 한다.

  • PDF