• 제목/요약/키워드: Gene expression data

검색결과 1,311건 처리시간 0.024초

Deep learning for stage prediction in neuroblastoma using gene expression data

  • Park, Aron;Nam, Seungyoon
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.30.1-30.4
    • /
    • 2019
  • Neuroblastoma is a major cause of cancer death in early childhood, and its timely and correct diagnosis is critical. Gene expression datasets have recently been considered as a powerful tool for cancer diagnosis and subtype classification. However, no attempts have yet been made to apply deep learning using gene expression to neuroblastoma classification, although deep learning has been applied to cancer diagnosis using image data. Taking the International Neuroblastoma Staging System stages as multiple classes, we designed a deep neural network using the gene expression patterns and stages of neuroblastoma patients. Despite a small patient population (n = 280), stage 1 and 4 patients were well distinguished. If it is possible to replicate this approach in a larger population, deep learning could play an important role in neuroblastoma staging.

시간경로 유전자 발현자료의 군집분석에서 이질적인 시계열의 탐지를 위한 패턴일치지수 (A Pattern Consistency Index for Detecting Heterogeneous Time Series in Clustering Time Course Gene Expression Data)

  • 손영숙;백장선
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.371-379
    • /
    • 2005
  • 본 논문에서는 피어슨 상관계수를 이용한 시간경로 유전자 발현자료의 군집분석에서 군집의 대표적인 패턴에서 벗어나는 이질적인 패턴을 보이는 시계열을 탐지하기 위한 패턴일치지수를 제안하고, 이를 마이크로어레이 실험으로부터 얻어진 혈청 시간경로 유전자 발현자료에 적용하여 유용성을 검토해 본다.

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

Principal Component Analysis를 이용한 Gene Selection (Gene Selection using Principal Component Analysis for Molecular classification)

  • 임수홍;손기락;홍성룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.259-261
    • /
    • 2005
  • 수천개의 Gene Expression Measurement를 생성해 내는 DNA Microarray 연구는 조직과 세포의 표본으로부터 진단에 유용한 Gene Expression 정보를 모으게 된다. 이런 종류의 Data를 분석하기 위하여 SVM(Support Vector Machine)을 사용한 새로운 방법이 연구되어왔다. 본 논문에서는 Gene Expression Data에 대한 고유벡터(Eigen Vector)를 이용하여 SVM의 성능을 향상시키고 질병진단에 유용한 Gene을 찾아 내는 알고리즘을 기술한다. 고유벡터를 통하여 Gene을 선택적으로 SVM Learning에 참가 시키고 분류의 결과를 통하여 추가된 Gene이 질병 진단에 미치는 영향력을 알아냄으로써 질병에 대한 Gene 역할을 파악 하는데 활용할 수 있다.

  • PDF

나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택 (Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles)

  • 홍진혁;조성배
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권8호
    • /
    • pp.372-377
    • /
    • 2008
  • 최근 활발히 연구가 진행 중인 유전발현 데이타를 이용한 다중클래스 암 분류는 DNA 마이크로어레이로부터 획득된 대규모의 유전자 정보를 분석하여 암의 종류를 판단한다. 수집된 유전발현 데이타에는 대상 암과 관련이 없는 유전자도 포함되어 있기 때문에 높은 성능의 분류 결과를 얻기 위해서 유용한 유전자를 선택하는 것이 필요하다. 기존의 순위기반 유전자 선택은 이진클래스를 대상으로 고안되었고 이상표식 유전자(Ideal marker gene)를 이용하기 때문에 다중클래스 암 분류에 직접 적용하기에는 한계가 있다. 본 논문에서는 이상표식 유전자를 사용하지 않고 유전발현 수준의 분포를 직접 분석하는 순위기반 다중클래스 유전자 선택 기법을 제안한다. 유전발현 수준을 이산화하고 학습 데이타로부터 빈도를 계산하여 클래스 간 분별력을 측정한 후, 선택된 유전자를 이용하여 나이브 베이즈 분류기를 사용해 다중 암 분류를 수행한다. 제안하는 방법을 다수의 다중클래스 암 분류 데이타에 적용하여 기존 유전자 선택 방법에 비해 우수함을 확인하였다.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

Correlation between Expression Level of Gene and Codon Usage

  • Hwang, Da-Jung;Han, Joon-Hee;Raghava, G P S
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.138-149
    • /
    • 2004
  • In this study, we analyzed the gene expression data of Saccharomyces cerevisiae obtained from Holstege et al. 1998 to understand the relationship between expression level and nucleotide sequence of a gene. First, the correlation between gene expression and percent composition of each type of nucleotide was computed. It was observed that nucleotide 'G' and 'C' show positive correlation (r ${\geq}$ 0.15), 'A' shows negative correlation (r ${\approx}$ -0.21) and 'T' shows no correlation (r ${\approx}$ 0.00) with gene expression. It was also found that 'G+C' rich genes express more in comparison to 'A+T' rich genes. We observed the inverse correlation between composition of a nucleotide at genome level and level of gene expression. Then we computed the correlation between dinucleotides (e.g. AA, AT, GC) composition and gene expression and observed a wide variation in correlation (from r = -0.45 for AT to r = 0.35 for GT). The dinucleotides which contain 'T' have wide range of correlation with gene expression. For example, GT and CT have high positive correlation and AT have high negative correlation. We also computed the correlation between trinucleotides (or codon) composition and gene expression and again observed wide range of correlation (from r = -0.45 for ATA r = 0.45 for GGT). However, the major codons of a large number of amino acids show positive correlation with expression level, but there are a few amino acids whose major codons show negative correlation with expression level. These observations clearly indic ate the relationship between nucleotides composition and expression level. We also demonstrate that codon composition can be used to predict the expression of gene in a given condition. Software has been developed for calculating correlation between expression of gene and codon usage.

  • PDF

기계학습 접근법에 기반한 유전자 선택 방법들에 대한 리뷰 (A review of gene selection methods based on machine learning approaches)

  • 이하정;김재직
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.667-684
    • /
    • 2022
  • 유전자 발현 데이터는 각 유전자에 대해 mRNA 양의 정도를 나타내고, 그러한 유전자 발현량에 대한 분석은 질병 발생에 대한 메커니즘을 이해하고 새로운 치료제와 치료 방법을 개발하는데 중요한 아이디어를 제공해오고 있다. 오늘날 DNA 마이크로어레이와 RNA-시퀀싱과 같은 고출력 기술은 수천 개의 유전자 발현량을 동시에 측정하는 것을 가능하게 하여 고차원성이라는 유전자 발현 데이터의 특징을 발생시켰다. 이러한 고차원성으로 인해 유전자 발현 데이터를 분석하기 위한 학습 모형들은 과적합 문제에 부딪히기 쉽고, 이를 해결하기 위해 차원 축소 또는 변수 선택 기술들이 사전 분석 단계로써 보통 사용된다. 특히, 사전 분석 단계에서 우리는 유전자 선택법을 이용하여 부적절하거나 중복된 유전자를 제거할 수 있고 중요한 유전자를 찾아낼 수도 있다. 현재까지 다양한 유전자 선택 방법들이 기계학습의 맥락에서 개발되어왔다. 본 논문에서는 기계학습 접근법을 사용하는 최근의 유전자 선택 방법들을 집중적으로 살펴보고자 한다. 또한, 현재까지 개발된 유전자 선택 방법들의 근본적인 문제점과 앞으로의 연구 방향에 대해 논의하고자 한다.

Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods

  • Kim, Dong-Uk;Nam, Jin-Hyun;Hong, Kyung-Ha
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1103-1113
    • /
    • 2011
  • Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called 'small n large p', genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.

Characteristics of Oncolytic Adenovirus Replication and Gene Expression in Hypoxic Condition

  • Kim, Hong-Sung
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.185-190
    • /
    • 2011
  • Adenovirus type 5 (Ad5) vectors have been used for gene transfer to a wide variety of cell types in vivo and in vitro. The advantages of adenovirus vectors include the high titer of virus readily obtained in large scale preparations, their ability to transduce dividing and non dividing cells, and the high level of transgene expression. Since adenovirus vectors do not integrate in host cell DNA, there is a lack of insertional mutagenesis. However, many human tumor cells lack expression of the adenovirus 5 receptors and contain areas of hypoxia. In order to identify the pattern of replication and gene expression of oncolytic adenovirus in hypoxic condition, multiple different fiber modified Ads (Ad5F/S11, Ad5F/S35, Ad5F/K7, Ad5F/K21, and Ad5F/RGD) was compared. The replication of all fiber modified adenovirus was inhibited in hypoxic condition in HEK 293 cells, but gene expression has variety on different tumor cell lines and the level of coxackievirus and adenovirus receptor (CAR) expression. These data suggest that CAR expression pattern and hypoxic condition of tumor are considered for optimal oncolytic adenovirus application.