• Title/Summary/Keyword: Gene delivery carrier

Search Result 42, Processing Time 0.022 seconds

Nonviral Gene Delivery by a Novel Protein Transduction Domain

  • An, Songhie;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2589-2593
    • /
    • 2013
  • Gene therapy using nonviral gene delivery carriers has focused on the development and modification of synthetic carriers such as liposomes and polymers. Most polymers that are commercially used are taking advantage of their polycationic character which allows not only strong ligand-DNA affinity but also competent cell penetration. Despite the relatively high transfection efficiencies, high cytotoxicity is continuously pointed out as one of the major shortcomings of polycationic polymers such as PEI. Studies on the utilization of peptides have therefore been carried out recently to overcome these problems. For these reasons, the human transcription factor Hph-1, which is currently known as a protein transduction domain (PTD), was investigated in this study to evaluate its potential as a gene delivery carrier. Although its transfection efficiency was about 10-fold lower than PEI, it displayed almost no cytotoxicity even at concentrations as high as $100{\mu}M$. Hph-1 was oxidatively polymerized to yield poly-Hph-1. The cell viability of poly-Hph-1 transfected U87MG and NIH-3T3 cells was almost as high as the control (untreated) groups, and the transfection efficiency was about 10-fold higher than PEI. This study serves as a preliminary evaluation of Hph-1 and encourages further investigation.

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier

  • Jung, Jinwoo;Lee, Jeil;Kim, Tae-Hun;Yang, Bong Suk;Lee, Eunji;Kim, Youn-Joong;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1036-1042
    • /
    • 2014
  • In this study, we introduced the RRLR oligopeptide sequences on the surface of polyamidoamine (PAMAM) dendrimer and characterized the physical properties and gene carrier activity of the novel polymer using HEK 293, NIH3T3, and HeLa cells. The RRLR peptide sequences were derived from a mouse fibroblast growth factor 3 (FGF3) protein containing a bipartite NLS motif. The entire sequence of FGF3 is RLRRDAGGRGGVYEHLGGAPRRRK and it has two functional sequences RLRR and RRRK at N-terminus and C-terminus, respectively. In particular, PAMAM G4-RRLR conferred enhanced transfection efficiency and lower cytotoxicity compared with those of PEI 25 kDa, PAMAM G4-R, and PAMAM G4 in various cell lines. These results suggest that the introduction of N-terminal oligopeptides of FGF3 on the surface of PAMAM holds promise as an effective non-viral gene delivery carrier for gene therapy.

Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

  • Bae, Yoonhee;Lee, Jell;Kho, Changwon;Choi, Joon Sig;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.467-478
    • /
    • 2021
  • In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

Lactic Acid Bacteria as Oral Antigen Protein Carriers (유산균을 이용한 겸구용 항원 단백질 수송능 연구)

  • Cho, Hee-Jeong;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • A promising application of Lactococcus lactis is its use as live vehicles for production and delivery of heterologous proteins of vaccines and therapeutic substances. Because L. lactis has GRAS ('generally regarded as safe') status, we tested whether L. lactis could function as the carrier of the Ll protein of human papillomavirus (HPV) type 16. The RNA level expression of Ll gene was detected in L. Lactis. The Ll protein was expressed in L. lactis with Ll gene. The growth of strains L. lactis with an empty plasmid (pAMJ328) and L. lactis with Ll-encoding plasmid (pAMJ328-Ll) was slightly decreased in comparison with the growth of strains L. lactis (wild type). However, all the three strains of L. lactis maintained the ability to ferment sugars primarily into lactic acid, indicating that Ll protein did not affect the biochemical property of L. lactis. These results suggest that L. lactis, capable of carrying Ll protein, might be further developed as a biocompatible oral protein delivery system.

Low Molecular Weight Polyethylenimine-Mitochondrial Leader Peptide Conjugate for DNA Delivery to Mitochondria

  • Choi, Joon-Sig;Choi, Min-Ji;Go, Gyeong-Su;Rhee, Byoung-Doo;KimPak, Young-Mi;Bang, In-Seok;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1335-1340
    • /
    • 2006
  • It has been found that a number of diseases are associated with mutations in the mitochondrial DNA. Therapeutic gene delivery to mitochondria has been suggested as a clinical option for these diseases. In this study, we developed a gene carrier to mitochondria by the conjugation of mitochondrial leader peptide (LP) to polyethylenimine (PEI). Mitochondrial LP conjugated PEI (PEI-LP) was synthesized with low molecular weight PEI (2,000 Da, PEI2K). Gel retardation assay showed that PEI2K-LP formed complexes at a 1.0/1 weight ratio. In addition, PEI2K-LP protected DNA from the enzymatic degradation for at least 60 min, while naked DNA was completely degraded within 20 min. PEI2K-LP was compared with LP conjugated high molecular weight PEI (25,000 Da, PEI25K) in terms of toxicity and delivery efficiency. MTT assay showed that PEI2K-LP had much lower cytotoxicity than PEI25K-LP to 293 cells. In addition, cell-free DNA delivery assay showed that PEI2K-LP delivered more DNA to mitochondria at a 1.8/1 weight ratio than naked DNA or PEI. This result suggests that PEI2K-LP may be useful for the development of mitochondrial gene therapy system with lower cytotoxicity.

Synthesis and Characterization of a Hydroxylated Dendrimeric Gene Delivery Carrier

  • Kim, Tae-Il;Bai, Cheng-Zhe;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1317-1321
    • /
    • 2007
  • Arginine conjugated PAMAM dendrimer, PAMAM-R was modified with propylene oxide via hydroxylation of primary amines of arginine residues. About 49 amines were detected to be converted to amino alcohols by 1H NMR. The newly synthesized polymer, PAMAM-R-PO was able to completely retard pDNA from a charge ratio of 2. The average diameter of PAMAM-R-PO polyplex was found to be 242 nm at a charge ratio of 30. The Zeta-potential value of PAMAM-R-PO polyplex was able to reach 20-30 mV over a charge ratio of 10. PAMAM-R-PO indicated higher cell viability than unmodified PAMAM-R on HeLa and 293 cells because of its hydroxylated amines. Transfection experiments on 293 cells showed that the transfection efficiency of PAMAM-R-PO was found to be 1.5-1.9 times higher than that of PEI25kDa at a charge ratio of 30. The polymer eventually displayed about 2 times greater transfection efficiency than PAMAM-R at the same charge ratio in the absence of serum. Therefore, we concluded that the modification of primary amines of PAMAMR to amino alcohols gives positive effects such as reduced cytotoxicity and enhanced transfection efficiency on 293 cells for gene delivery potency of PAMAM-R.

The Synthesis of Artery Wall Targeted Gene Carrier Using Low Molecular Water-Soluble Chitosan (저분자량 수용성 키토산을 이용한 동맥 벽 표적성 유전자 전달체의 합성)

  • Choi Chang-Yong;Jang Mi-Kyeong;Nah Jae-Woon
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • Non-viral gene carriers continue to attract a great deal of interest due to advantageous safety profile. Among the non-viral gene carriers, cationic liposomes or synthetic gene carriers are efficient DNA carriers in vitro. but their in vivo applications are greatly hampered because of low biocompatibility. On the other hand, chitosan, a natural cationic polysaccharide, is a candidate non-viral vector for gene delivery because of its low cytotoxicity and high positive charges. In this work, targeted gene carrier was synthesized to target artery wall cells using low molecular water-soluble chitosan (LMWSC). The molecular weight $(M_W)$ and degree of de acetylation (DDA) of LMWSC were measured by relative viscometer and Kina titration. respectively. The structure of LMWSC was analyzed by measuring FTIR, $^1H-NMR,\;and\;^{13}C-NMR$. AWBP-PEG-g-LMWSC was synthesized by conjugation of the artery wall binding peptide (AWBP), a specific targeting peptide, to the end of pegylated LMWSC as a gene carrier to target artery wall cells. The synthesized AWBP-PEG-g-LMWSC were analyzed by measuring FTIR, $^1H-NMR$, zeta -potentiometer, and atomic force microscopy (AFM).

Osteogenic activity of an adenovirus expressing BMP-2 on Human Periodontal Ligament cells (Adenovirus에 의해서 발현된 BMP-2가 치주인대세포의 분화에 미치는 영향)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Sang-Cheul;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Han, Soo-Boo;Chung, Chong-Pyoung;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.511-524
    • /
    • 2005
  • The regeneration of lost periodontal tissue is a major goal of therapy. Periodontal ligament cell(PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. Bone morphogenetic proteins(BMPs) have shown much potential in the reconstruction of the periodontum by stimulate new bone and new cementum formation. Limitiations of BMP administration to periodontal lesions is high dose delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene delivery method can be alternative treatment strategy to deliver BMPs to periodontal tissue. The purpose of this study is to investigate efficiency of BMP-2 gene delivery with cell-based therapy using PDL cells. PDL cell were transduced with adenoviruses encoding either BMP-2 or Lac-Z gene. To evaluate osteogenic activity of expressed BMP-2 on PDL cells, we investigated secreted BMP-2, cellular activity, ALPase, produced mineralized nodules. To evaluate collagen scaffold as carrier for transduced cell delivery, we examined morphology and secreted BMP-2 of transducd PDL cells on it. BMP-2 transducd PDL cells produced higher levels of BMP-2, ALPase, mineralized nodules than non transduced cells. Cellular activity of transduced cells was showed similar activity to non transduced cells. Transduce cells attached on collagen scaffold secreted BMP-2 at 7day and was showed similar morphology to non transduced cells. These results demonstrated that transduced PDL cells produced biologically active BMP-2 and collagen scaffold could be carrier of transducd cells.