• Title/Summary/Keyword: Gene chip

Search Result 259, Processing Time 0.038 seconds

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

Production of Recombinant Proteins as Immuno-Analytical Markers of Genetically-Modified Organisms (GMO)

  • Hwang, Ok-Hwa;Park, Hyuk-Gu;Paek, Eui-Hwan;Paek, Se-Hwan;Park, Won-Mok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.783-788
    • /
    • 2004
  • Marker proteins of genetically-modified organisms (GMO) and their antibodies were prepared and characterized as major components of an analytical system. We selected two GMO markers, neomycin phosphotransferase II and 5- enolpyruvylshikimate-3-phosphate synthase, and produced them from E. coli employing genetic recombination technology. After purification, their structural conformation and binding affinities to the respective antibodies were characterized. The results showed that the recombinant proteins were identical with commercially obtained reference proteins. We further used them as immunogens to raise polyclonal antibodies capable of discriminating GMO containing protein from non-GMO. Well-characterized marker proteins and antibodies will be valuable as immunoreagents in constructing analytical systems such as biosensors and biochips to measure quantities of GMO.

Effects of Gleditsia spina (GS) water extract on Gene Expression of Human Melanoma cells, by using Microarry technique (DNA chip을 이용한 조각자 추출물의 인간유래 악성 종양에 미치는 영향)

  • Park, Yong-Ho;Kim, Jong-Han;Park, Su-Yeon;Choi, Jeong-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.1
    • /
    • pp.55-69
    • /
    • 2008
  • Objective : This study was designed to investigated effects of Gleditsia spina (GS) on human derived melanoma cells Methods : The genetic profile for the effect of medicine on human derived melanoma cells of SK-MEL-2, was measured by using microarray technique, and the functional analysis on these genes was conducted. The network of total protein interactions was measured by using cytoscape program. Results : Total 253 genes were up-regulated and 439 genes down-regulated in cells treated with GS. Genes induced or suppressed by GS were all mainly concerned with metabolic process, regulation of biological process and protein binding. Conclusion : Suggest the possibility of GS as anti-cancer drug and cosmetic agent, and also suggest that related mechanisms are involved in regulation of intra-cellular metabolism in melanoma cells.

  • PDF

Normalization of Microarray Data: Single-labeled and Dual-labeled Arrays

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.254-261
    • /
    • 2006
  • DNA microarray is a powerful tool for high-throughput analysis of biological systems. Various computational tools have been created to facilitate the analysis of the large volume of data produced in DNA microarray experiments. Normalization is a critical step for obtaining data that are reliable and usable for subsequent analysis such as identification of differentially expressed genes and clustering. A variety of normalization methods have been proposed over the past few years, but no methods are still perfect. Various assumptions are often taken in the process of normalization. Therefore, the knowledge of underlying assumption and principle of normalization would be helpful for the correct analysis of microarray data. We present a review of normalization techniques from single-labeled platforms such as the Affymetrix GeneChip array to dual-labeled platforms like spotted array focusing on their principles and assumptions.

A Study on Electrical Properties of Dendrimer (미소전극형 DNA칩 어레이를 이용한 유전자의 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1324-1326
    • /
    • 2006
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 mV/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

  • PDF

Association of Clusterin Polymorphisms (-4453T<G, 5608T<C) with Coronary Heart Disease in Korean Population (한국인에서의 Clusterin의 유전자다형성(-4453T<G, 5608T<C)과 관상동맥질환과의 연관성)

  • Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.584-588
    • /
    • 2010
  • Clusterin is an 80 kDa heterodimetric glycosylated protein which plays diverse biological roles in various tissues and organs. Clusterin is reported to be associated with the pathogenesis of coronary artery disease and atherosclerosis. Therefore, we investigated the genotype for the T

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.

Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa (배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.575-584
    • /
    • 2015
  • Drought stress is a crucial environmental factor determining crop survival and productivity. The goal of this study was to clearly identify a new drought stress-tolerance gene in Brassica rapa. From KBGP-24K microarray data with the B. rapa ssp. pekinensis inbred line 'Chiifu' under drought stress treatment, a gene which was named BrDSR (B. rapa Drought Stress Resistance) was chosen among 738 drought-responsive unigenes. BrDSR function has yet to be determined, but its expression was induced over 6-fold by drought. To characterize BrDSR, the gene was isolated from B. rapa inbred line 'CT001' and found to contain a 438-bp open reading frame encoding a 145 amino acid protein. The full-length cDNA of BrDSR was used to construct an over-expression vector, 'pSL100'. Tobacco transformation was then conducted to analyze whether the BrDSR gene can increase drought tolerance in plants. The BrDSR expression level in T1 transgenic tobacco plants selected via PCR and DNA blot analyses was up to 2.6-fold higher than non-transgenic tobacco. Analysis of phenotype clearly showed that BrDSR-expressing tobacco plants exhibited more tolerance than wild type under 10 d drought stress. Taking all of these findings together, we expect that BrDSR functions effectively in plant growth and survival of drought stress conditions.

Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa (배추에서 염 저항성 관련 유전자, BrSSR의 기능 검정 및 발현 네트워크 분석)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Ji-Hyun;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.845-852
    • /
    • 2014
  • Among various abiotic stress factors, soil salinity decreases the photosynthetic rate, growth, and yield of plants. Recently, many genes have been reported to enhance salt tolerance. The objective of this study was to characterize the Brassica rapa Salt Stress Resistance (BrSSR) gene, of which the function was unclear, although the full-length sequence was known. To characterize the role of BrSSR, a B. rapa Chinese cabbage inbred line ('CT001') was transformed with pSL94 vector containing the full length BrSSR cDNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression of BrSSR in the transgenic line was 2.59-fold higher than that in the wild type. Analysis of phenotypic characteristics showed that plants overexpressing BrSSR were resistant to salinity stress and showed normal growth. Microarray analysis of BrSSR over-expressing plants confirmed that BrSSR was strongly associated with ERD15 (AT2G41430), a gene encoding a protein containing a PAM2 motif (AT4G14270), and GABA-T (AT3G22200), all of which have been associated with salt tolerance, in the co-expression network of genes related to salt stress. The results of this study indicate that BrSSR plays an important role in plant growth and tolerance to salinity.

Effects of Retinoic Acid on Differentiation and Gene Expression of Pig Preadipocytes (Retinoic Acid가 돼지 지방전구세포의 분화와 유전자 발현에 미치는 영향)

  • Lim, Hee-Kyong;Choi, Kang-Duk;Oyungerel, Baatartsogt;Choi, Young-Suk;Chung, Chung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.475-484
    • /
    • 2008
  • The current study was undertaken to determine the effect of retinoic acid(RA) on differentiation and gene expression of pig preadipocytes. The preadipocytes were isolated from the backfat of the new-born pigs. RA was treated to the cultured cells for 4 days and RNA was extracted from the cells. Isolated RNA went through in situ hybridization using the 14,688-gene cDNA microarray chip. Degree of cell differentiation was determined by measuring glycerol 3-phosphate dehydrogenase activity. RA decreased differentiation of pig preadipocytes by 78%. Fourteen genes were significantly up-regulated by RA, including genes known to be involved in lipid metabolism, particulary sphingomyelin phosphodiesterase, apolipoprotein R precursor, growth factor receptor-bound protein 14, retinoic acid receptor RXR gamma. However, the expression of vascular endothelial growth factor D precursor and growth hormone receptor precursor genes playing a central role in cell growth, was greatly decreased. These results suggest that RA inhibits differentiation of pig preadiocytes by regulation of gene expression of the growth factor or growth hormone receptor.