• Title/Summary/Keyword: Gene assembly

Search Result 161, Processing Time 0.032 seconds

Differentially Up-expressed Genes Involved in Toluene Tolerance in Pseudomonas sp. BCNU106 (유기용매 내성 세균 Pseudomonas sp. BCNU106 균주에서 차별적으로 상향 발현되는 유전자군의 톨루엔 내성과의 연관성)

  • Joo, Woo Hong;Bae, Yun-Ui;Kim, Da Som;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • Using a random arbitrarily primed polymerase chain reaction, messenger RNA expression levels were assessed after exposure to 10% (v/v) toluene for 8 hr in solvent-tolerant Pseudomonas sp. BCNU 106. Among the 100 up-expressed products, 50 complementary DNA fragments were confirmed to express repeatedly; these were cloned and then sequenced. Blast analysis revealed that toluene stimulated an adaptive increase in the gene expression level in association with transcriptions such as LysR family of transcriptional regulators and RNA polymerase factor sigma-32. The expression of catalase and Mn2+/Fe2+ transporter genes functionally associated with inorganic ion transport and metabolism increased, and the increased expression of type IV pilus assembly PilZ and multi-sensor signal transduction histidine kinase genes, functionally categorized into signal transduction and mechanisms, was also demonstrated under toluene stress. The gene expression level of beta-hexosaminidase in association with carbohydrate transport and metabolism increased, and those of DNA polymerase III subunit epsilon, DNA-3-methyladenine glycosylase II, DEAD/DEAH box helicase domain-containing protein, and ABC transporter also increased after exposure to toluene in DNA replication, recombination, and repair, and even in defense mechanism. In particular, the RNAs corresponding to the ABC transporter, Mn2+/Fe2+ transporter, and the β-hexosaminidase gene were confirmed to be markedly induced in the presence of 10% toluene. Thus, defense mechanism, cellular ion homeostasis, and biofilm formation were shown as essential for toluene tolerance in Pseudomonas sp. BCNU 106.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map

  • Jiang, Wan-Zhu;Yao, Fang-Jie;Fang, Ming;Lu, Li-Xin;Zhang, You-Min;Wang, Peng;Meng, Jing-Jing;Lu, Jia;Ma, Xiao-Xu;He, Qi;Shao, Kai-Sheng;Khan, Asif Ali;Wei, Yun-Hui
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.406-420
    • /
    • 2021
  • Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1-SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.

Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome

  • Xiaolong Yuan;Yunqing Li;Ting Luo;Wei Bi;Jiaojun Yu;Yi Wang
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.36-48
    • /
    • 2023
  • Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.

Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System

  • Kim, Kyoung-Jin;Song, Jae-Ho
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.530-536
    • /
    • 2006
  • Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasm ids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size bead, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.

Expression and cDNA Cloning of klp-12 Gene Encoding an Ortholog of the Chicken Chromokinesin, Mediating Chromosome Segregation in Caenorhabditis elegans

  • Ali, M. Yusuf;Khan, M.L.A.;Shakir, M.A.;Kobayashi, K. Fukami;Nishikawa, Ken;Siddiqui, Shahid S.
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2000
  • In eukaryotes, chromosomes undergo a series of complex and coordinated movements during cell division. The kinesin motor proteins, such as the chicken Chromokinesin, are known to bind DNA and transport chromosomes on spindle microtubles. We previously cloned a family of retrograde C-terminus kinesins in Caenorhabditis elegans that mediate chromosomal movement during embryonic development. Here we report the cloning of a C. elegans klp-12 cDNA, encoding an ortholog of chicken Chromokinesin and mouse KIF4. The KLP-12 protein contains 1609 amino acid and harbors two leucine zipper motifs. The insitu RNA hybridization in embryonic stages shows that the klp-12 gene is expressed during the entire embryonic development. The RNA interference assay reveals that, similar to the role of Chromokinesin, klp-12 functions in chromosome segregation. These results support the notion that during mitosis both types, the anterograde N-terminus kinesins such as KLP-12 and the retrograde C-terminus kinesins, such as KLP-3, KLP-15, KLP-16, and KLP-17, may coordinate chromosome assembly at the metaphase plate and chromosomal segregation towards the spindle poles in C. elegans.

  • PDF

Engineering Hybrid Proteins by Modular Recombination and Evolutionary Optimization (모듈성 단백질의 재설계 및 개량)

  • Lee, Seung-Goo;Rha, Eu-Gene;Ha, Jae-Seok;Lee, Jeong-Min;Kim, Sun-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • Many proteins consist of distinctive domains that can act independently or cooperatively to achieve a unique function. As these domains evolve from a naturally existing repertoire of functional domains, this implies that domain organization is an intrinsic element involved in building the complex structure and function of proteins. Thus, identifying functional domains would appear to be critical to the elucidation of questions related to protein evolution, folding, and the engineering of hybrid proteins for tai- lored applications. However, the simple application of "Lego-like assembly" to the engineering of hybrid proteins is an oversimplification, as many hybrid constructs lack structural stability, usually due to unfavorable domain contacts. Thus, directed evolution, along with computational studies, may help to engineer hybrid proteins with improved physico-chemical properties. Accordingly, this paper introduces several approaches to functional hybrid protein engineering that potentially can be used to create modulators of gene transcription and cell signaling, and novel biosensors to analyze biological functions in vivo.

Visualization of Gene Transfer into Live Cells Using Fluorescent Semiconductor Nanocrystals

  • Kim Jung Kyung;Lim Sun Hee;Lee Yongku;Shin Young Shik;Chung Chanil;Chang Jun Keun;Yoo Jung Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.81-82
    • /
    • 2003
  • We have developed the method for the conjugation of biotinylated DNA to streptavidin-coated QDs. QD-DNA conjugates and a high-sensitive fluorescence imaging technique are adopted to visualize gene transport across the membrane of the live cell in real time. Endocytotic cellular uptake of oligonucleotide and electrically-mediated plasmid DNA transfer into the live cell are monitored by a quantitative microscopic imaging system. Long-term kinetic study enables us to reveal the unknown mechanisms and rate-limiting steps of extracellular and intracellular transport of biomolecules. We designed experimental protocols to conjugate the oligonucleotide or the plasmid DNA to commercially available streptavidin-coated QDs. Gel electrophoresis is used to verify the effect of incubation time and the molar ratio of QDs and DNA on the conjugation efficiency. It is possible to fractionate the QD-DNA conjugates according to the DNA concentration and obtain the purified conjugates by a gel extraction technique.

  • PDF

Inference of Aspergillus fumigatus Pathways by Computational Genome Analysis: Tricarboxylic Acid Cycle (TCA) and Glyoxylate Shunt

  • Do, Jin-Hwan;Anderson, Michael-J.;Denning, David-W.;Erich, Bornberg-Bauer
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.74-80
    • /
    • 2004
  • Aspergillus fumigatus is one of the most common fungi in the human environment, both in-doors and out-doors. It is the main causative agent of invasive aspergillosis, a life-threatening mycosis among immunocompromised patients. The genome has been sequenced by an international consortium, including the Wellcome Trust Sanger Institute (U.K.) and The Institute for Genomic Research (TIGR, U.S.A.), and a ten times whole genome shotgun sequence assembly has been made publicly available. In this study, we identified tricarboxylic acid (TCA) cycle enzymes of A. fumigatus by comparative analysis with four other fungal species. The open reading frames showed high amino acid sequence similarity with the other fungal citric acid enzymes and well-conserved functional domains. All genes present in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa were also found in A. fumigatus. In addition, we identified four A. fumigatus genes coding for enzymes in the glyoxylate shunt, which may be required for fungal virulence. The architecture of multi-gene encoded enzymes, such as isocitrate dehydrogenase, 2-ketoglutarate, succinyl-CoA synthetase, and succinate dehydrogenase was well conserved in A. fumigatus. Furthermore, our results show that genes of A. fumigatus can be detected reliably using GlimmerM.

Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines

  • Han, Jeong A.;Kim, Ji-Yeon;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2014
  • Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2 are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31 are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.