Browse > Article

Engineering Hybrid Proteins by Modular Recombination and Evolutionary Optimization  

Lee, Seung-Goo (Systems Microbiology Research Center, KRIBB)
Rha, Eu-Gene (Systems Microbiology Research Center, KRIBB)
Ha, Jae-Seok (Systems Microbiology Research Center, KRIBB)
Lee, Jeong-Min (Systems Microbiology Research Center, KRIBB)
Kim, Sun-Hwa (Systems Microbiology Research Center, KRIBB)
Publication Information
Microbiology and Biotechnology Letters / v.36, no.2, 2008 , pp. 149-157 More about this Journal
Abstract
Many proteins consist of distinctive domains that can act independently or cooperatively to achieve a unique function. As these domains evolve from a naturally existing repertoire of functional domains, this implies that domain organization is an intrinsic element involved in building the complex structure and function of proteins. Thus, identifying functional domains would appear to be critical to the elucidation of questions related to protein evolution, folding, and the engineering of hybrid proteins for tai- lored applications. However, the simple application of "Lego-like assembly" to the engineering of hybrid proteins is an oversimplification, as many hybrid constructs lack structural stability, usually due to unfavorable domain contacts. Thus, directed evolution, along with computational studies, may help to engineer hybrid proteins with improved physico-chemical properties. Accordingly, this paper introduces several approaches to functional hybrid protein engineering that potentially can be used to create modulators of gene transcription and cell signaling, and novel biosensors to analyze biological functions in vivo.
Keywords
Modularity; protein engineering; directed evolution; domain; redesign;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bishop, A., O. Buzko, S. Heyeck-Dumas, I. Jung, B. Kraybill, Y. Liu, K. Shah, S. Ulrich, L. Witucki, F. Yang, C. Zhang, and K. M. Shokat. 2000. Unnatural ligands for engineered proteins: new tools for chemical genetics. Ann. Rev. Biophys. Biomol. Struct. 29: 577-606   DOI   ScienceOn
2 Chevalier, B. S., T. Kortemme, M. S. Chadsey, D. Baker, R. J. Monnat, and B. L. Stoddard. 2002. Design, activity, and structure of a highly specific artificial endonuclease. Mol. Cell. 10: 895-905   DOI   ScienceOn
3 Choi, S.-L., E. Rha, D. Y. Kim, J. J. Song, S.-P. Hong, M.-H. Sung, and S.-G. Lee. 2006. High throughput screening and directed evolution of tyrosine phenol-lyase. Kor. J. Microbiol. Biotechnol. 34: 58-62   과학기술학회마을
4 Fehr, M., W. B. Frommer, and S. Lalonde. 2002. Visualization of maltose uptake in living yeast cells by fluorescent nanosensor. PNAS 99: 9846-9851
5 Kuchner, O. and F. H. Arnold. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15: 523-530   DOI   ScienceOn
6 Mochizuki, N., S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda. 2001. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1, Nature 411: 1065-1068   DOI   ScienceOn
7 Moore, G. L. and C. D. Maranas. 2003. Identifying residueresidue clashes in protein hybrids by using a second-order mean-field approach. PNAS 100: 5091-5096
8 Ostermeier, M., J. H. Shim, and S. J. Benkovic. 1999. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17: 1205-1209   DOI   ScienceOn
9 Stemmer, W. P. C. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. PNAS 91: 10747-10751
10 Tanimura, A., A. Nezu, T. Morita, R. J. Turner, and Y. Tojyo. 2004. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-triphosphate in single living cells. J. Biol. Chem. 279: 38095-38098   DOI   ScienceOn
11 Tsien, R. Y. and A. Miyawaki. WO 98/40477, 17 September 1998
12 Zhao, H. 2004. Staggered Extension process in vitro DNA recombination. Methods Enzymol. 388: 42-49   DOI   ScienceOn
13 Michnick, S. W. 2003. Protein fragment complementation strategies for biochemical network mapping. Curr. Opin. Biotech. 14: 610-617   DOI   ScienceOn
14 Bhattacharyya, R. P., A. Remnyi, B. J. Yeh, and W. A. Lim. 2006. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75: 655-680   DOI   ScienceOn
15 Fehr, M., D. W. Ehrhardt, S. Lalonde, and W. B. Frommer. 2004. Minimally invasive dynamic imaging of ions and metabolites in living cells, Curr. Opin. Plant Biol. 7: 345- 351   DOI   ScienceOn
16 Joern, J. M., T. Sakamoto, A. Arisawa, and F. H. Arnold. 2001. A versatile high throughput screen for dioxygenase activity using solid-phase digital imaging. J. Biomol. Screen 6: 219-23   DOI
17 Nagai, T., A. Sawano, E. S. Park, and A. Miyawaki. 2001. Circularly permutated green fluorescent proteins engineered to sense $Ca^{2+}$. PNAS 98: 3197-3203
18 Park, H.-S., S.-H. Nam, J. K. Lee, C. N. Yoon, B. Mannervik, S. J. Benkovic, and H.-S. Kim. 2006. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311: 535-538   DOI   ScienceOn
19 Dwyer, M. A., L. L. Looger, and H. W. Hellinga. 2003. Computational design of a $Zn^{2+}$ receptor that controls bacterial gene expression, PNAS 100: 11255-11260
20 Arnold, F. H. and G. Georgiou. 2003. Method in Molecular Biology, vol.230, Directed enzyme evolution: Screening and selection methods, Human Press Inc. Totowa, NJ
21 Lager, I., M. Fehr, W. B. Frommer, and S. Lalonde. 2003. Development of a fluorescent nanosensor for ribose. FEBS Lett. 553: 85-89   DOI   ScienceOn
22 Allert, M., M. Dwyer, and H. W. Hellinga. 2007. Local encoding of computationally designed enzyme activity. J. Mol. Biol. 366: 945-953   DOI   ScienceOn
23 Frommer, W. B., M. Fehr, and S. Lalonde. WO 03/025220, 27 March 2003
24 Hocker, B., C. Jurgens, M. Wilmanns, R. Sterner. 2001. Stability, catalytic versatility and evolution of the ($\beta$/$\alpha$)8- barrel fold. Curr. Opin. Biotechnol. 12: 376-381   DOI   ScienceOn
25 Nagai, T., S. Yamada, T. Tominaga, M. Ichikawa, and A. Miyawaki. 2004. Expanded dynamic range of fluorescent indicators for $Ca^{2+}$ by circularly permuted yellow fluorescent proteins. PNAS 101: 10554-10559
26 Okumoto, S., L. L. Looger, K. D. Micheva, R. J. Reimer, S. J. Smith, and W. B. Frommer. 2005. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. PNAS 102: 8740-8745
27 Ponting, C. P. and R. R. Russel. 2002. The natural history of protein domains. Annu. Rev. Biophys. Biomol. Struct. 31: 45- 71   DOI   ScienceOn
28 Bogarad, L. D. and M. W. Deem. 1999. A hierarchical approach to protein molecular evolution. PNAS 96: 2591- 2595
29 Frase, H. B. 2005. Coevolution, modularity and human disease. Curr. Opin. Genet. Dev. 16: 637-644   DOI   ScienceOn
30 Voigt, C. A., C. Martinez, Z. G. Wang, S. L. Mayo , and F. H. Arnold. 2002. Protein building blocks preserved by recombination. Nat. Struct. Biol. 9: 553-558   PUBMED
31 Ha, J. S., J. J. Song, Y. M. Lee, J.-H. Sohn, C.-S. Shin, and S.-G. Lee. 2007. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl. Environmen. Microbiol. 73: 7408-7414   DOI   ScienceOn
32 Mainfroid, V., K. Goraj, F. Rentier-Delrue, A. Houbrechts, M. E. M. Noble, T. V. Borchert, R. K. Wierenga, and J. A. Martial. 1993. Replacing the ($\beta$$\alpha$)-unit 8 of E. coli TIM with its chicken homologue leads to a stable and active hybrid enzyme. Protein Eng. 6: 893-900   DOI
33 Olsen, M., B. Iverson, and G. Georgiou. 2000. High-throughput screening of enzyme libraries. Curr. Opin. Biotechnol. 11: 331-337   DOI   ScienceOn
34 Crameri, A., S.-A. Raillard, E. Bermudez, and W. P. C. Stemmer. 1998. DNA shuffling of genes from diverse species accelerates directed evolution. Nature 391: 288-291   DOI   ScienceOn
35 Fraser, H. B. 2005. Modularity and evolutionary constraint on proteins. Nat. Genet. 37: 351-352   DOI   ScienceOn
36 Arnold, F. H. 2001. Combinatorial and computational challenges for biocatalyst design. Nature 409: 253-257   DOI   ScienceOn
37 Chang, M. C. Y., R. A. Eachus, W. Trieu, D.-K. Ro, and J. D. Keasling. 2007. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3: 274-277   DOI   ScienceOn
38 De Lorimier, R. M., J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew, and H. W. Hellinga. 2002. Construction of a fluorescent biosensor family. Protein Sci. 11: 2655-2675   DOI   ScienceOn
39 Deuschle, K., S. Okumoto, M. Fehr, L. L. Looger, L. Kozhukh, and W. B. Frommer. 2005. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 14: 2304-2314   DOI   ScienceOn
40 Mootz, H. D., D. Schwarzer, and M. A. Marahiel. 2000. Construction of hybrid peptide synthetases by module and domain fusions. PNAS 97: 5848-5853
41 Looger, L. L., M. A. Dwyer, J. J. Smith, and H. W. Hellinga. 2003. Computational design of receptor and sensor proteins with novel functions. Nature. 423: 185-190   DOI   ScienceOn
42 Marvin, J. S., E. E. Corcoran, N. A. Hattangadi, J. V. Zhang, and H. W. Hellinga. 1997. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. PNAS 94: 4366-4371
43 Miyawaki, A., J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien. 1997. Fluorescent indicators for $Ca^{2+}$ based on green fluorescent proteins and calmodulin. Nature 388: 882-887   DOI   ScienceOn
44 Dong, M., W. H. Tepp, E. A. Johnson, and E. R. Chapman. 2004. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. PNAS 101: 14701-14706
45 Fehr, M., S. Lalonde, I. Lager, M. W. Wolf, and W. B. Frommer. 2003. In vivo imaging of the dynamic of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors, J. Biol. Chem. 278: 19127-19133   DOI   ScienceOn
46 Guntas, G., T. J. Mansell, J. R. Kim, and M. Ostermeier. 2005. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. PNAS 102: 11224-11229
47 Kawarasaki, Y., K. E. Griswold, J. D. Stenson, T. Selzer, S. J. Benkovic, B. L. Iverson, and G. Georgiou. 2003. Enhanced crossover SCRATCHY: construction and highthroughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. 31: e126   DOI   ScienceOn