• Title/Summary/Keyword: Gelator

Search Result 7, Processing Time 0.019 seconds

Self-assembly and Mechanism of L-Alanine-based Dihydrazide Derivative as Excellent Gelator of Organic Solvents

  • Wang, Chuan-Sheng;Wang, Xiao-Hong;Li, Zhi-Yuan;Wei, Wei;Shi, Zhong-Liang;Sui, Zhi-Tong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1258-1262
    • /
    • 2011
  • A new organogelator, L-Alanine dihydrazide derivative can self-assemble in various organic solvents and turned them into thermally reversible physical supramolecular organogels at extremely low concentrations (< 2 wt %). The gel-sol phase transition temperatures ($T_{GS}$) were determined as a function of gelator concentration and the corresponding enthalpies (${\Delta}H_g$) were extracted. Scanning electron microscopy (SEM) measurements revealed that the interspaces of fiber-like network structures were diminished with the increasing of the LMOG concentration. FT-IR spectroscopy studies revealed that hydrogen-bonding and hydrophobic interaction were the driving forces for the formation of the gels. Based on the data of XRD and molecular modeling, the possible packing modes for the formation of organogelator aggregates were proposed.

Synthesis and Characteristics of Acrylol Borate as New Acrylic Gelator for Lithium Secondary Battery

  • Shin, Hyun-Min;Nguyen, Congtranh;Kim, Byeong-Yeol;Han, Myong-Hee;Kim, Ju-Sung;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.134-138
    • /
    • 2008
  • A novel acrylol borate was designed and synthesized by reacting acrylate monomer and boric acid. The obtained acrylol borate was used as both gelator and anion receptor for the liquid electrolyte in a lithium secondary battery. It was found that the ionic conductivity of the gel polymer electrolyte (GPE) was as high as that of the liquid electrolyte, and the thermal stability of GPE was increased when only 2 wt% acrylol borate was incorporated into the liquid electrolyte. These results suggest that acrylol borate can be used as an effective additive to enhance the thermal stability of the electrolyte without adversely affecting its conductivity. It is believed that the strong complex formation between boron in the gelator and the anion of the salt is responsible for the enhanced thermal stability of the electrolyte solution and the increased ionic conductivity.

Characterization of Oleogels and Oleogel Emulsions Made with Sucrose Ester and Ceramide as Mixed Gelators (수크로스 에스터와 세라마이드를 혼합 겔레이터로 사용한 올레오겔과 올레오겔 에멀젼의 특성 분석)

  • Dayeon Lee;Byung Suk Jin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.501-506
    • /
    • 2023
  • Oleogel and oleogel emulsions of sunflower oil were prepared using sucrose ester and ceramide as mixed gelators. The crystal structure of the gelator in the oleogels and oleogel emulsion formulations was observed with a polarized optical microscope, and the dispersion form of water was confirmed with confocal laser scanning microscopy. Through the DSC thermogram analysis, it was confirmed that the crystal structure of ceramide disappeared when sucrose ester and ceramide were mixed, and the crystallinity of the mixed gelator increased further when water was added to the formulation. Changes in rheological properties such as viscosity and viscoelasticity according to the ratio of sucrose ester, ceramide, and water in the formulation were examined. As the content of ceramide and water increased, the viscosity, storage modulus, and loss modulus all increased, and the stability of the formulation also tended to increase.

Novel Silica Nanotubes Using a Library of Carbohydrate Gel Assemblies as Templates for Sol-Gel Transcription in Binary Systems

  • Jung, Jong-Hwa;Lee, Shim-Sung;Shinkai, Seiji;Iwaura, Rika;Shimizu, Toshimi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • Sugar-based gelator p-dodecanoyl-aminophenyl- ${\beta}$-D-aldopyranosides (1-3) have been shown to self-assemble in the presence of p-aminophenyl aldopyranosides. The hydrogel 1+4 showed the double-helical structure with 3-25 nm outer diameters, which is quite different from that of 1. The gel 2+5 revealed twisted ribbon structure with 30-50 nm in widths and a few micrometers of length whereas the gel 3+4 revealed the single and the bundled fiber structures. The difference in these gel supramolecular structures has successfully been transcribed into silica structures by sol-gel polymerization of tetraethoxysilane (TEOS), resulting in the doublehelical, the twisted-ribbon, the single and the multiple (lotus-shaped) hollow fiber structures. These results indicate that novel silica structures can be created by transcription of various superstructures formed in binary gels through the hydrogen-bonding interaction, and the amino group of the p-aminophenyl aldopyranosides acts as an efficient driving force to create novel silica nanotubes. Furthermore, electron energy-loss spectroscopy (ELLS) provided strong evidence for the inner hollow structure of the double-helical silica nanotube. This is a novel and successful example that a variety of new silica structures can be created using a library of carbohydrate gel fibers as their templates.

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Three-dimensional Gelator for All Solution-processed and Photopatterned Electronic Devices (전용액공정 전자소자 제작용 3D 가교제에 관한 연구)

  • Kim, Min Je;Cho, Jeong Ho
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.6
    • /
    • pp.25-36
    • /
    • 2020
  • 용액공정을 통해 유기 전자소자를 대면적으로 제조하는 것은 다양한 장치 구성 요소(반도체, 절연체, 도체)의 패터닝 및 적층이 필요하기 때문에 매우 어려운 과제이다. 본 연구에서는 4개의 광 가교 기능기를 가지는 3차원 사면체 가교제인 (2,2-bis(((4-azido-2,3,5,6-tetrafluorobenzoyl)oxy)methyl)propane-1,3-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate) (4Bx)를 활용하여 용액공정을 기반으로 형성된 전자재료 박막을 고해상도로 패터닝 및 적층하는 기술을 개발하고, 이를 사용하여 고분자 박막 트랜지스터(PTFTs) 및 논리회로 어레이 제작을 진행하였다. 4Bx는 다양한 용액공정이 가능한 전자재료와 용매에 쉽게 혼합될 수 있으며, 자외선(UV)에 의해 가교제가 광 활성화되어 전자재료와 가교 결합을 형성할 수 있다. 4Bx는 기존의 2개의 광 가교 기능기를 갖는 가교제에 비해 높은 가교 효율로 인해 적은 양을 첨가하여도 완전하게 가교된 전자재료 박막을 형성할 수 있어 전자재료의 고유한 특성을 보존할 수 있다. 더욱이, 가교된 전자재료 박막은 화학적 내구성이 향상되어 고해상도 미세 패터닝을 할 수 있을 뿐만 아니라 용액공정을 통해 전자소자를 구성하는 전자재료의 적층이 가능하다. 4Bx의 광 가교 방법은 전용액공정을 통한 전자소자의 제작에 대한 혁신적인 방안을 제시한다.