DOI QR코드

DOI QR Code

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon (Department of Bio & Nano Chemistry, Kookmin University) ;
  • Park, Cheol-Hee (Corporate R&D, LG Chem Research Park) ;
  • Kim, Sang-Ho (Department of Chemistry, Kongju National University) ;
  • Yoon, Sung-Ho (Department of Bio & Nano Chemistry, Kookmin University) ;
  • Piao, Longhai (Department of Chemistry, Kongju National University)
  • Received : 2011.02.09
  • Accepted : 2011.07.11
  • Published : 2011.09.20

Abstract

Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Keywords

References

  1. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: New York, 1953.
  2. Flory P. J. Statistical Mechanics of Chain Molecules; Wiley- Interscience: New York, 1969.
  3. Hamley, I. W. Introduction to Soft Matter; John Wiley & Sons: New York, 2000.
  4. Sperling, L. H. Introduction to Physical Polymer Science; Wiley: New York, 1992.
  5. Yong, R. J.; Lovell, P. A. Introduction to Polymers, 2nd ed; Chapman and Hall: London, U.K., 1991.
  6. Leong, W. L.; Vittal, J. J. Chem. Rev. ASAP.
  7. Yan, Y.; Martens, A. A.; Besseling, N. A. M.; Wolf, F. A. D.; Keizer, A. D.; Drechsler, M.; Stuart, M. A. C. Angew. Chem., Int. Ed. 2008, 47, 4192 https://doi.org/10.1002/anie.200705242
  8. Ikeda, M.; Tanaka, Y.; Hasegawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 6806. https://doi.org/10.1021/ja0619096
  9. Karthikeyan, S.; Potisek, S. L.; Piermattei, A.; Sijbesma, R. P. J. Am. Chem. Soc. 2008, 130, 14968. https://doi.org/10.1021/ja806887k
  10. Kim, H.-J.; Lee, E.; Park, H.-S.; Lee, M. J. Am. Chem. Soc. 2007, 129, 10994. https://doi.org/10.1021/ja073554b
  11. Tokuhisa, H.; Kanesato, M. Langmuir 2005, 21, 9728. https://doi.org/10.1021/la051236p
  12. Kelch, S.; Rehahn, M. Macromolecules 1998, 31, 4102. https://doi.org/10.1021/ma971752p
  13. Kim, H.-J.; Jung, E.-Y.; Jin, L. Y.; Lee, M. Macromolecules 2008, 41, 6066. https://doi.org/10.1021/ma8010203
  14. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. https://doi.org/10.1021/cr9900432
  15. Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry: Cambridge, U.K., 2009.
  16. Kahn, O. Acc. Chem. Res. 2000, 33, 647. https://doi.org/10.1021/ar9703138
  17. Uemura, K.; Kumamoto, Y.; Kitagawa, S. Chem. Eur. J. 2008, 14, 9565. https://doi.org/10.1002/chem.200800806
  18. Chadha, M.; Dunnigan, M. E.; Sahyun, M. R. V.; Ishida, T. J. Appl. Phys. 1998, 84, 887. https://doi.org/10.1063/1.368152
  19. Lin, B.; Dong, J.; Whitcomb, D. R.; McCormick, A. V.; Davis, H. T. Langmuir 2004, 20, 9069. https://doi.org/10.1021/la048793g
  20. Dong, J.; Whitcomb, D. R.; McCormick, A. V.; Davis, H. T. Nanotechnology 2005, 16, S592. https://doi.org/10.1088/0957-4484/16/7/037
  21. Bokhonov, B. B.; Burleva, L. P.; Whitcomb, D. R.; Sahyun, M. R. V. Microsc. Res. Tech. 1998, 42, 152. https://doi.org/10.1002/(SICI)1097-0029(19980715)42:2<152::AID-JEMT10>3.0.CO;2-H
  22. Vand, V.; Aitken, A.; Campbell, R. K. Acta Crystallogr. 1949, 2, 398. https://doi.org/10.1107/S0365110X49001041
  23. Tolochko, B. P.; Chernov, S. V.; Nikitenko, S. G.; Whitcomb, D. R. Nucl. Instrum. Meth. Phys. Res. A 1998, 405, 428. https://doi.org/10.1016/S0168-9002(97)01044-9
  24. Ikeda, M.; Iwata, Y. Photogr. Sci. Eng. 1980, 24, 273.
  25. Lee, S. J.; Han, S. W.; Choi, H. J.; Kim, K. J. Phys. Chem. B 2002, 106, 7439. https://doi.org/10.1021/jp0255841
  26. Lee, S. J.; Han, S. W.; Choi, H. J.; Kim, K. J. Phys. Chem. B 2002, 106, 2892. https://doi.org/10.1021/jp0132937
  27. Malik, W. U.; Jain, A. K.; Jhamb, O. P. J. Chem. Soc. A 1971, 1514. https://doi.org/10.1039/j19710001514
  28. Munakata, M.; Wu, L. P.; Ning, G. L. Coord. Chem. Rev. 2000, 198, 171. https://doi.org/10.1016/S0010-8545(99)00162-9
  29. Salazar-Mendoza, D.; Baudron, S. A.; Hosseini, M. W. Chem. Commun. 2007, 2252.
  30. Yoon, S.; Kwon, W. J.; Piao, L. H.; Kim, S.-H. Langmuir 2007, 23, 8295. https://doi.org/10.1021/la701232n
  31. Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.; Nagasawa, H.; Nakamoto, M.; Yamaguchi, T.; Yase, K. Thin Solid Films 1998, 524, 327.
  32. Park, S. H.; Choi, B. G.; Joo, M. K.; Han, D. K.; Sohn, Y. S.; Jeong, B. Macromolecules 2008, 41, 6486. https://doi.org/10.1021/ma800562s
  33. Ohkura, M.; Kanaya, T.; Kaji, K. Polymer 1992, 33, 5044. https://doi.org/10.1016/0032-3861(92)90056-3
  34. Zhang, W.; Qiao, X. J. Chen. Mater. Sci. Eng. B 2007, 142, 1. https://doi.org/10.1016/j.mseb.2007.06.014
  35. Yamamoto, M.; Nakamoto, M. J. Mater. Chem. 2003, 13, 2064. https://doi.org/10.1039/b307092a
  36. Nakamoto, M.; Kashiwagi, Y.; Yamamoto, M. Inorg. Chim. Acta 2005, 358, 4229. https://doi.org/10.1016/j.ica.2005.03.037
  37. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
  38. Yamamoto, M.; Kashiwagi, Y.; Nakamoto, M. Langmuir 2006, 22, 8581. https://doi.org/10.1021/la0600245
  39. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785. https://doi.org/10.1126/science.284.5415.785
  40. Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821. https://doi.org/10.1039/b417081b
  41. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. https://doi.org/10.1021/cr9700282
  42. Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201. https://doi.org/10.1021/cr0302049
  43. van Esch, J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000, 39, 2263. https://doi.org/10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V
  44. Kishimura, A.; Yamashita, T.; Aida, T. J. Am. Chem. Soc. 2005, 127, 179. https://doi.org/10.1021/ja0441007
  45. George, M.; Funkhouser, G. P.; Terech, P.; Weiss, R. G. Langmuir 2006, 22, 7885. https://doi.org/10.1021/la0610405
  46. Terech, P.; Schaffhauser, V.; Maldivi, P.; Guenet, J. M. Langmuir 1992, 8, 2104. https://doi.org/10.1021/la00045a007
  47. Terech, P.; Gebel, G.; Ramasseul, R. Langmuir 1996, 12, 4321. https://doi.org/10.1021/la960381n
  48. Xing, B.; Choi, M.-F.; Zhou, Z.; Xu, B. Langmuir 2002, 18, 9654. https://doi.org/10.1021/la0256580
  49. Cheremisinoff, P, N. J. Am. Oil Chem. Soc. 1951, 28, 278. https://doi.org/10.1007/BF02678906

Cited by

  1. Synthesis of Silver Nanoparticles from the Decomposition of Silver(I) [bis(alkylthio)methylene]malonate Complexes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.60