• Title/Summary/Keyword: Gelatinization property

Search Result 81, Processing Time 0.021 seconds

Physicochemical Properties of Cross-linked Rice Starches (가교화 쌀 전분의 이화학적 특성)

  • Choi, Hyun-Wook;Chung, Koo-Min;Kim, Chung-Ho;Moon, Tae-Hwa;Park, Cheon-Seok;Baik, Moo-Yeol
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Physicochemical properties of cross-linked rice starches were investigated. Swelling power of cross-linked rice starch increased at relatively lower temperature $(60^{\circ}C)$ than native rice starch $(70^{\circ}C)$. Cross-linked rice starch showed lower solubility $(1.7{\sim}6.1%)$ than native rice starch $(2.2{\sim}13.8%)$ and solubility is not significantly different with the amount of phosphorus oxychloride. Pasting temperature $(69.2{\sim}70.6^{\circ}C)$ and peak viscosity $(2,874{\sim}3,175\;cp)$ of cross-linked rice starch were lower than native starch $(71.6^{\circ}C,\;3,976\;cp)$, but holding strength $(2,177{\sim}2,708\;cp)$ and final viscosity $(3,424{\sim}3,826 \;cp)$ of cross-linked rice starch were higher than native starch (1,000 cp, 2,312 cp). DSC thermal transitions of cross-linked rice starches were shifted to a lower temperature than native rice starch but there was no significant difference in gelatinization enthalpy between native and cross-linked rice starches. X-ray diffraction pattern of both native and cross-linked rice starches showed typical A-type crystal indicating that cross-linking had not affected the crystalline region of starch.

A Study on the Thermal Characterization of Barley ${\beta}-Glucan$ [mixed-linked $(1-3),(1-4)-{\beta}-D-Glucan$] by Differential Scanning Calorimetry (DSC에 의한 보리 ${\beta}-Glucan$ [mixed-linked$(1-3),(1-4)-{\beta}-D-Glucan$의 열적 특성에 관한 연구)

  • Cha, Hee-Sook;Kim, Mi-Ok;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.22-27
    • /
    • 1993
  • Crude ${\beta}-glucan$ extracted from Barley was purified by stepwide enzyme treatment with thermostable ${\alpha}-amylase$, amyloglucosidase and protease. The thermal properties of Barley ${\beta}-glucan$ were investigated by Differential Scanning Calorimetry. Three endotherms have been observed on DSC thermograms of Barley ${\beta}-glucan$. The first endotherm which produced the gelatinization phenomena commonly observed in Barley ${\beta}-glucan$ became the focus of this study. The temperature range and the enthalpy of gelation exhibited maximum values with increasing concentration of Barley ${\beta}-glucan$. Gelating Barley ${\beta}-glucan$ registered an enthalpy of approximately 0.23 cal/g and exhibited onset temperature (To), peak temperature (Tp) and conclusion temperature (Tc) of $48.8^{\circ}C,\;61.2^{\circ}C\;and\;78.5^{\circ}C$ respectively. The temperature and enthalpy of gelatinizing Barley ${\beta}-glucan$ at both alkali and acid conditions were lower than those at pH 7. With salt present, the Tp and Tc of gelating Barley ${\beta}-glucan$ produced lower temperatures than in conditions where salt was absent, and the enthalpy abruptly decreased. However, increasing salt concentrations did not affect the gelation temperature and the enthalpy of Barley ${\beta}-glucan$. The 'true melting' temperature of Barley ${\beta}-glucan$ was near $184^{\circ}C$ and the melting enthalpy was approximately 34.6 cal/g. The Barley ${\beta}-glucan$ decomposition temperature was in the range of $316^{\circ}C{\sim}346^{\circ}C$.

  • PDF

Effects of heat-moisture treatment on functional properties of high amylose rice starches with different crystalline types (결정형이 다른 고아밀로스 쌀 전분의 기능적 성질에 수분열처리 효과)

  • Huang, Mengyao;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • The effects of heat-moisture treatment (HMT) on the functional properties of high amylose rice starches (HARSes) purified from Korean rice varieties (A-type Goami and Singil and B-type Dodamssal and Goami2) were investigated. HMT was accomplished with moisture contents of 18 and 27% and heated at 100℃ for 16 h. While the amylose content, swelling power and solubility decreased after HMT, the water binding capacity and resistant starch (RS) content increased with increasing moisture content after HMT. The X-ray diffraction patterns of all HARSes did not change after HMT, but a decrease in the intensity of peak at 2θ=5° was observed in B-type HMT HARSes. While the starch granules aggregated after HMT, their shape and size remained unchanged. B-type HARSes exhibited higher gelatinization temperatures and lower pasting viscosities than A-type HARSes following HMT. The results, thus, suggest that while the crystalline intensity of B-type Dodamssal and Goami2 rice starches did not change after HMT, the RS content, water binding capacity, and pasting temperatures of all HARSes increased with increasing moisture content after HMT.

Gel Properties of Mook Manufactured from Acorns Harvested in Various Countries according to Storage Period (수입 원산지별 도토리묵의 저장기간에 따른 겔화 특성)

  • Yang, Kee-Heun;Lee, Kun-Jong;Kim, Mee-Ree
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1168-1175
    • /
    • 2012
  • Gel properties of Mook manufactured from acorn harvested in various countries [domestic (KAS), Chinese (CAS), and North Korea (NAS)] were analyzed according to storage period. Gel properties included water binding, syneresis of gel, DSC (differential scanning calorimetry), X-ray diffraction, SEM (scanning electron microscopy), texture, Hunter's color value, and sensory value. Water binding of NAS, CAS, and KAS were 233.8%, 217.3%, and 215.0%, respectively. Syneresis of gel from KAS, CAS, and NAS were 2.06%, 1.85%, and 1.45%, respectively, after 1 day of storage. There were significant differences upon storage for 1~3 days (p<0.05), whereas were no significant differences upon storage for 4~10 days. Peak temperature of gelatinization property by DSC was $55.28^{\circ}C$ for KAS, $54.45^{\circ}C$ for CAS, and $54.12^{\circ}C$ for NAS after 1 day of storage. Hardness of texture in NAS, KAS, and CAS were 374.9, 357.4, and 348.9, respectively, after 1 day of storage. Hunter's color L value, and a value were highest in NAS, whereas b value was the lowest in CAS. There were no significant differences in any particular sensory values.

Growth Property and Seed Quality of Mungbean Cultivars Appropriate for Labor Saving Cultivation (생력재배에 적합한 녹두 품종의 특성)

  • Kim, Dong-Kwan;Son, Dong-Mo;Choi, Jin-Kyung;Chon, Sang-Uk;Lee, Kyung-Dong;Rim, Yo-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • The purpose of this study was to identify mungbean (Vigna radiata L.) cultivars with appropriate characteristics for labor saving culture (whole crop feeding and combine harvesting), and to investigate seed quality in the southern South Korea. Cultivar Dahyeon exhibited strong lodging resistance, excellent disease tolerance, and greater pod numbers per plant resulting in higher yield. Cultivar Owool and Keumseong, the two most common mungbean cultivars in Korea, exhibited lower yield than Dahyeon due to weaker disease tolerance or lower pod numbers per plant. Cultivar Samgang demonstrated higher seed starch content, Jangan, Nampyeong, and Keumseong exhibited higher crude protein content, and Sohyeon exhibited higher vitexin and isovitexin contents. However, no statistical differences were found among the cultivars in crude fat content. Unsaturated fatty acid ranged from 51.8 to 57.2%, with saturated fatty acid ranging from 36.2 to 40.3%. We detected five unsaturated fatty acids including linoleic acid (36.1 to 38.6%), linolenic acid (10.3 to 14.7%), and oleic acid (2.7 to 4.6%), and seven saturated fatty acids including palmitic acid (28.7 to 30.9%), stearic acid (2.9 to 4.1%), and arachidic acid (1.5 to 3.7%). There were significant differences between the cultivars in amylogram properties of seeds: the Nampyeong cultivar exhibited a lower gelatinization temperature; Dahyeon was higher in peak viscosity and breakdown; and Sohyeon, Nampyeong, and Dahyeon were lower in setback.

Study of Molecular and Crystalline Structure and Physicochemical Properties of Rice Starch with Varying Amylose Content (아밀로오스 함량이 다른 쌀 전분의 분자 및 결정 구조와 이화학적 특성)

  • You, Su-Yeon;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.682-688
    • /
    • 2014
  • The in vitro digestibility and molecular and crystalline structures of rice starches (Seilmi, Dasan1, and Segoami) with differing amylose content were investigated. Segoami had the highest amylose content (30.9%), whereas Dasan1 had the lowest amylose content (21.2%). The molecular weight ($\bar{M}_w$) of amylose and amylopectin in Segoami was much lower than that of the other two rice starches. Segoami had the highest proportion (8.7%) of amylopectin short branch chains (DP 6-12) and the lowest proportion of B1 chains (DP 13-24). The relative crystallinity, intensity ratio of $1047-1022cm^{-1}$ (1047/1022) and gelatinization enthalpy followed the order: Segoami>Seilmi~Dasan1. Segoami showed substantially low pasting viscosity. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents showed the highest value in Seilmi, Dasan1, and Segoami, respectively. The expected glycemic index (eGI) of Segoami was lower than that of the other two rice starches. Overall results suggested that the digestibility of rice starch could be highly influenced by their molecular and crystalline structure.

Physicochemical and Organoleptic Properties of Starch Isolated from Gamma-Irradiated Acorn (감마선 조사 도토리로부터 분리한 전분의 이화학적 및 관능적 특성)

  • Kwon, Joong-Ho;Kim, Soo-Jin;Lee, Jung-Eun;Lee, Soo-Jeong;Kim, Sung-Kon;Kim, Jeong-Sook;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1007-1012
    • /
    • 2002
  • Physicochemical and organoleptic properties were investigated in starch extracted from acorn gamma-irradiated for insect control. Hunter's color L, a, and b values were unchanged upon irradiation at 0.25 to 10 kGy. Scanning electron microscopic observation revealed no changes with gamma irradiation at 1 kGy, that is effective for disinifestation, whereas 10 kGy resulted in some clefts on the starch surface. X-ray diffraction analysis showed patterns of both amorphous and crystalline regions were not different among the treatment groups. Water-binding property, swelling power, solubility, and gelatinization patterns of starch were influenced by irradiation dose, but 1 kGy dose was not detrimental to the physicochemical properties. Textural parameters of acorn gel were relatively stable, but significant reductions were found in hardness, adhesiveness, and chewiness in samples irradiated at 3 kGy or higher. Rrsults revealed that irradiation at 1 kGy or lower could be applied for insect control without causing apparent changes in physicochemical and organoleptic properties of acorn starch.

Extraction of starch from frozen potato whole-tissues using cellulase and its physicochemical properties (셀룰로오스분해효소에 의한 동결감자로부터 전분의 추출 및 물리화학적 특성)

  • Kim, Jaehyun;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.348-355
    • /
    • 2019
  • This study investigated the impact of cellulase treatment on the extraction yield of potato starch (PS), and compared the physicochemical properties of PS by conventional (CSE) and enzymatic (ESE) starch extraction. In ESE, the PS extraction yield was predominantly influenced by reaction temperature, time and their interaction, compared to the cellulase concentration. When potatoes were treated for 8 h at $40^{\circ}C$ with 1.5% cellulase, the PS extraction yield was about 3.4-fold higher than that by CSE. Compared to CSE-PS, ESE-PS showed lower total starch contents and higher amylose contents, resulting in lower swelling factors and distorted pasting viscosity profiles accompanied by absence of peak and breakdown viscosities. However, ESE did not affect the gelatinization characteristics of PS. Overall results suggested that ESE can provide the highest yield of PS, and ESE-PS can be a potential starch source for extending the utilization of PS in food industries.

The Additional Effects of Various Materials on Microwave Heating Property of Frozen Dough (품질개량제 첨가가 냉동반죽의 Microwave 가열특성에 미치는 영향)

  • Kim, Eun-Mi;Han, Hye-Kyung;Kim, In-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.873-881
    • /
    • 2005
  • This study was conducted to improve the properties of frozen dough foods (buns and noodles etc.) on the quality deterioration with microwave oven cooking. Microwave is a useful cooking method, but it quickly takes moisture from food surface and makes lowering food quality abruptly. For improvement of these problems, mixing doughs with addition of various additives of 34 types manufactured respectively; starches, modified starches, gums and emulsifiers etc. Each mixing dough produced in sheet type $(30{\times}30{\times}1mm)$ and steamed them, was quickly froze at $-70^{\circ}C$ and packed with polyethylene. Packed samples kept at $-20^{\circ}C$ for 48 hours. After they were steam or microwave treatment packed or non-packed with polyethylene, studied for improvement effects of quality as sensory evaluation and selected 6 type additives; modified starches (TA, ST), gums (AR, GA) and emulsifiers (E, S1) as improvement agent. Because moisture loss from microwave oven cooking leads to quality deterioration of frozen dough foods, additive, such as including starches, modified starch, gums, and emusifiers were added to improve dough properties. Amylogram, scanning electron microscopy, textural analysis, and differential scanning calorimetry revealed addition of additives improved textural properties including surface-hardening of frozen dough foods compared to the control.

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.