• Title/Summary/Keyword: Gel-Polymer Electrolyte

Search Result 107, Processing Time 0.029 seconds

Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives

  • Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.319-322
    • /
    • 2009
  • Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of polymerizable additive (3,4-ethylenedioxythiophene, thiophene, biphenyl). The organic additives were electrochemically oxidized to form conductive polymer films on the electrode at high potential. With the gel polymer electrolytes containing different organic additive, lithium-ion polymer cells composed of carbon anode and LiCo$O_2$ cathode were assembled and their cycling performances were evaluated. Adding small amounts of thiophene or 3,4-ethylenedioxythiophene to the gel polymer electrolyte was found to reduce the charge transfer resistance in the cell and it thus exhibited less capacity fading and better high rate performance.

Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte

  • Kwon, O. Hyeon;Kim, Jae-Kwang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.547-552
    • /
    • 2019
  • Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.

A Study on Advanced Lithium-Ion Battery with Polyurethane-Based Gel Polymer Electrolyte (Polyurethane기 겔폴리머전해질을 이용한 Advanced Lithium-Ion Battery에 관한 연구)

  • 김현수;문성인;윤문수;김상필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.252-254
    • /
    • 2002
  • In this study, polyurethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte, and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/MCF cells were also prepared and their performances depending on discharge currents and temperatures were evaluated. ionic conductivity of the gel polymer electrolyte with PUA at room temperature and -20$^{\circ}C$ was ca. 4.5 x 10$\^$-3/ S/cm and 1.7${\times}$10$\^$-3/ S/cm, respectively. GPE was stable electrochemically up to 4.5 V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/MCF cell showed a good high-rate and a low-temperature performance.

  • PDF

A Study on Urethane-Based Gel Polymer Electrolyte for Lithium ion Battery (리튬이온전지용 Urethane기 겔폴리머전해질에 관한 연구)

  • 김현수;김성일;최관영;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1033-1038
    • /
    • 2002
  • In this study, urethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte (GPE), and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were Prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor consisting of urethane acrylate (UA), hexanediol dimethacrylate (HDDA) and benzoyl peroxide (BPO) had a low viscosity relatively ionic conductivity of the gel polymer electrolyte with UA at room temperature and -20$\^{C}$ was ca. 4.5 $\times$ 10$\^$-3/S$.$cm$\^$-1/ and 1.7 x 10$\^$-3/ S$.$cm$\^$-1/, respectively GPR was stable electrochemically up to potential of 4.i V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/graphite cells showed good a high-rate and a low-temperature performance.

Synthesis and Characteristics of Acrylol Borate as New Acrylic Gelator for Lithium Secondary Battery

  • Shin, Hyun-Min;Nguyen, Congtranh;Kim, Byeong-Yeol;Han, Myong-Hee;Kim, Ju-Sung;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.134-138
    • /
    • 2008
  • A novel acrylol borate was designed and synthesized by reacting acrylate monomer and boric acid. The obtained acrylol borate was used as both gelator and anion receptor for the liquid electrolyte in a lithium secondary battery. It was found that the ionic conductivity of the gel polymer electrolyte (GPE) was as high as that of the liquid electrolyte, and the thermal stability of GPE was increased when only 2 wt% acrylol borate was incorporated into the liquid electrolyte. These results suggest that acrylol borate can be used as an effective additive to enhance the thermal stability of the electrolyte without adversely affecting its conductivity. It is believed that the strong complex formation between boron in the gelator and the anion of the salt is responsible for the enhanced thermal stability of the electrolyte solution and the increased ionic conductivity.

Electrochemical Properties of Lithium-Ion Polymer Battery with PMMA IPN-Based Gel Polymer Electrolyte (PMMA IPN계 겔폴리머전해질을 채용한 리튬이온폴리머전지의 전기화학적 특성)

  • 김현수;신정한;나성환;엄승욱;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.994-1000
    • /
    • 2003
  • In this study, gel polymer electrolytes (GPE) with semi-interpenerating network of poly (methyl methacrylate) and hexanediol dimethacrylate were synthesized and their electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing 5 vol% curable mixture had a low viscosity relatively. GPE showed good electrochemical stability up to potential of 4.8 V vs. Li/Li$\^$+/. Ionic conductivity of the gel polymer electrolyte at room temperature and -20$^{\circ}C$ was ca. 5.9 and 1.4${\times}$10$\^$-3/ Scm$\^$-1/, respectively. LiCoO$_2$/GPE/graphite cells showed good rate capability, low-temperature performance and cycleability.

Optimization Study on Polymerization of Crosslink-type Gel Polymer Electrolyte for Lithium-ion Polymer Battery (리튬이온폴리머전지용 가교형 겔폴리머전해질의 중합조건 최적화 연구)

  • Kim, Hyun-Soo;Moon, Seong-In;Kim, Sang-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2005
  • In this work, polymerization conditions of the gel polymer electrolyte (GPE) were studied to obtain better electrochemical performances in a lithium-ion polymer battery. When the polymerization temperature and time of the GPE were 70$^{\circ}C$ and 70 min, respectively, the lithium polymer battery showed excellent a rate capability and cycleability. The TMPETA (trimethylolpropane ethoxylate triacrylate)/TEGDMA (triethylene glycol dimethacrylate)-based cells prepared under optimized polymerization conditions showed excellent rate capability and low-temperature performances: The discharge capacity of cells at 2 Crate showed 92.1 % against 0.2C rate. The cell at -20 $^{\circ}C$ also delivered 82.4 % of the discharge capacity at room temperature.

Comparison of Natural Polymer Based Gel Electrolytes in Flexible Zinc-Air Batteries (플랙서블 아연-공기전지를 위한 천연 고분자 젤 전해질의 전기화학적 거동 비교)

  • Byeong Jin Jeong;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.533-537
    • /
    • 2022
  • Flexible zinc-air batteries have many merits, including low cost, high safety, environmentally friendliness applicability, etc. One of the key factors to improve the performance of flexible zinc-air batteries is to use a gel electrolyte. In this study, gel electrolytes were synthesized from potato, sweet potato, and corn starch. In a comparison of each starch, the corn starch-based gel electrolyte showed the highest discharge capacity of 12.41 mAh/cm2 in 20 mA and 6.47 mAh/cm2 in 30 mA. It also delivered a higher specific discharge capacity of 7.06 mAh/cm2 than the other materials after 100° bending. In addition, the electrochemical impedance spectroscopy (EIS) was analyzed to calculate the ionic conductivity. The potato, sweet potato, and corn starch-based gel electrolytes showed electrolyte resistances (Re) of 0.306, 0.298, and 0.207 Ω, respectively. In addition, the corn starch-based gel electrolyte delivered the highest ionic conductivity of 0.121 S cm-1 among the other gel electrolytes. Thus, the corn starch-based gel electrolyte was verified to improve the performance of flexible zinc-air batteries.

Quasi-Solid-State Polymer Electrolytes Based on a Polymeric Ionic Liquid with High Ionic Conductivity and Enhanced Stability

  • Jeon, Nawon;Jo, Sung-Geun;Kim, Sang-Hyung;Park, Myung-Soo;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • A polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxypropyl) imidazolium iodide) (PMAPII), was synthesized as a single-iodide-ion-conducting polymer and employed in a gel polymer electrolyte. Gel polymer electrolytes prepared from iodine, 4-tert-butylpyridine, ${\gamma}$-butyrolactone, and PMAPII were applied in quasi-solid-state dye-sensitized solar cells (DSSCs). The addition of 16 wt.% PMAPII provided the most favorable environment, striking a compromise between the iodide ion concentration and the ionic mobility, which resulted in the highest conversion efficiency of the resulting DSSCs. The quasi-solid-state DSSC assembled with the optimized gel polymer electrolyte exhibited a relatively high conversion efficiency of 7.67% under AM 1.5 illumination at $100mA\;cm^{-2}$ and better stability than that of the DSSC with a liquid electrolyte.

Preparation and Characterization of Chemical Gel Based on [Epoxy/PEG/PVdF-HFP] Blend for Lithium Polymer Battery Applications ([Epoxy/PEG/PVdF-HFP] 복합체를 이용한 리튬고분자전지용 화학겔의 제조 및 분석)

  • Kim, Joo-Sung;Seo, Jeong-In;Bae, Jin-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.544-550
    • /
    • 2009
  • In this study, we have designed [Epoxy/PEG] polymer gel electrolyte systems by thermal curing the mixtures of epoxy, PEG, imidazole catalyst, and a plasticizer of 1:1 ethylene carbonate and propylene carbonate in the presence of $LiPF_6$ salt. In order to enhance the poor mechanical property of the Corresponding [Epoxy/PEG] gel electrolyte PVdF-HFP was incorporated into the system. The ionic conductivities of the polymer gel electrolytes were related to the amount of PVdF-HFP in blends as well as the amount of liquid electrolyte. The optimized gel system showed room-temperature conductivities of $2.56\times10^{-3}S/cm$.