Preparation and Characterization of Chemical Gel Based on [Epoxy/PEG/PVdF-HFP] Blend for Lithium Polymer Battery Applications

[Epoxy/PEG/PVdF-HFP] 복합체를 이용한 리튬고분자전지용 화학겔의 제조 및 분석

  • Kim, Joo-Sung (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Seo, Jeong-In (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Bae, Jin-Young (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • 김주성 (성균관대학교 고분자공학과) ;
  • 서정인 (성균관대학교 고분자공학과) ;
  • 배진영 (성균관대학교 고분자공학과)
  • Published : 2009.11.25

Abstract

In this study, we have designed [Epoxy/PEG] polymer gel electrolyte systems by thermal curing the mixtures of epoxy, PEG, imidazole catalyst, and a plasticizer of 1:1 ethylene carbonate and propylene carbonate in the presence of $LiPF_6$ salt. In order to enhance the poor mechanical property of the Corresponding [Epoxy/PEG] gel electrolyte PVdF-HFP was incorporated into the system. The ionic conductivities of the polymer gel electrolytes were related to the amount of PVdF-HFP in blends as well as the amount of liquid electrolyte. The optimized gel system showed room-temperature conductivities of $2.56\times10^{-3}S/cm$.

본 연구에서는 $LiPF_6$ 하에서의 에폭시, 폴리에틸렌글리콜, 이미다졸 촉매, ethylene carbonate와 propylene carbonate 1:1 가소제 혼합물을 열 경화하여 [Epoxy/PEG] 고분자겔 전해질 시스템을 고안하였다. 얻어진 [Epoxy/PEG] 고분자겔 전해질의 기계적 물성을 보완하기 위해서 PVdF-HFP를 복합화하였다. [Epoxy/PEG/PVdF-HFP] 복합체 고분자겔 전해질은 기계적 안정성 및 치수 안정성이 우수하였으며, 복합체의 이온전도도는 복합체의 액체 전해질의 양뿐만 아니라 PVdF-HFP 양에 크게 의존하는 결과를 얻었다. 최적화된 고분자겔 시스템의 상온 이온전도도는 $2.56\times10^{-3}S/cm$를 나타내었다.

Keywords

References

  1. M. B. Armand, J. R. MacCallum, and C. A. Vincent, Eds., in Polymer Electrolyte Review-1, Elsvier, New York, p 1 (1987)
  2. M. A. Ratner and A. Nitzan, Faraday Discuss. Chem. Soc., 88, 19 (1990) https://doi.org/10.1039/dc9898800019
  3. K. M. Abraham, Z. Jiang, and B. Carroll, Chem. Mater., 9, 1978 (1997) https://doi.org/10.1021/cm970075a
  4. J. A. Johnson et al., J. Chem. Phys., 109, 7005 (1998) https://doi.org/10.1063/1.477352
  5. V. Di Noto, M. Vittadello, S. G. Greenbaum, S. Suarez, K. Kano, and T. Furukawa, J. Phys. Chem. B, 108, 18832 (2004) https://doi.org/10.1021/jp047413x
  6. B. D. Ghosh, K. F. Lott, and J. E. Ritchie, Chem. Mater., 17, 661(2005) https://doi.org/10.1021/cm0486969
  7. J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews, Elsevier Applied Science, New York, 1989
  8. W. Xu, J. Belieres, and C. A. Angell, Chem. Mater., 13, 575 (2001) https://doi.org/10.1021/cm000694a
  9. C. Chiu, H. Chen, S. Kuo, C. Huang, and F. Chang, Macromolecules, 37, 8424 (2004) https://doi.org/10.1021/ma0488156
  10. K. Nagoka, H. Naruse, I. Ahinohara, and M. Watanabe, J. Polym. Sci., Polym. Lett. Ed., 22, 659 (1984) https://doi.org/10.1002/pol.1984.130221205
  11. M. Watanabe, M. Rikukawa, K. Sanui, and N. Ogata, Macromolecules, 19, 188 (1986) https://doi.org/10.1021/ma00155a029
  12. D. Fish, I. M. Khan, E. Wu, and J. Smid, Br. Polym. Adv. Technol., 4, 281 (1988)
  13. K. Inoue, Y. Nishikawa, and T. Tanigaki, Macromolecules, 24, 3646 (1991)
  14. Y. Tada, M. Sato, N. Takeno, Y. Nakacho, and K. Shigehara, Chem. Mater., 62, 7(1994)
  15. G. Liu, M. Reinhout, B. Mainguy, and G. L. Baker, Macromolecules, 39, 4726 (2006) https://doi.org/10.1021/ma052544x
  16. M. Andrei, L. Marchese, A. Roggero, and P. Prosperi, Solid State Ionics, 72, 140 (1994) https://doi.org/10.1016/0167-2738(94)90138-4
  17. M. Watanabe and A. Nishimoto, Solid State Ionics, 79, 306 (1995) https://doi.org/10.1016/0167-2738(95)00079-L
  18. P. Jannasch, Chem. Mater., 14, 2718 (2002) https://doi.org/10.1021/cm021103e
  19. H. Kataoka, Y. Saito, Y. Uetani, S. Murata, and K. Kii, J. Phys. Chem. B, 106, 12084 (2002) https://doi.org/10.1021/jp0265541
  20. X. Sun, Y. Lin, and X. Jing, Solid State Ionics, 83, 79 (1996) https://doi.org/10.1016/0167-2738(95)00235-9
  21. M. Watanabe and Nishimota, Solid State Ionics, 79, 306 (1995) https://doi.org/10.1016/0167-2738(95)00079-L
  22. P. Basak S. V. K. Singh, and O. Parkash, J. Phys. Chem. B, 109, 1174 (2005) https://doi.org/10.1021/jp0460792
  23. M. Alamgir and K. M. Abrahama, J. Power Sources, 54, 40 (1995) https://doi.org/10.1016/0378-7753(94)02037-4
  24. M. Alamgir and K. M. Abrahama, J. Electrochem. Soc., 140, L96 (1993) https://doi.org/10.1149/1.2221654
  25. E. Jiang, B. Carroll, and K. M. Abraham, Electrochim. Acta, 422, 667 (1997)
  26. H. Tokuda, S. Tabata, M. A. B. Susan, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B, 108, 11995 (2004) https://doi.org/10.1021/jp048646r
  27. F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G. B. Appetecchi, and B. Scroati, Electrochim. Acta, 39, 2187 (1994) https://doi.org/10.1016/0013-4686(94)E0167-X
  28. K. M. Abraham, M. Kuzhikalail, and M. Alamgir, US Pat. 5,219,679 (1990)
  29. M. N. Richard, I. Koetscu, and J. R. Dahn, J. Electrochem. Soc., 144, 544 (1997)
  30. C. H. Kim, H. T. Kim, J. K. Park, S. I. Moon, and M. S. Yoon, J. Polym. Sci., Polym. Phys., 34, 2609 (1996)
  31. H. Y. Sung, Y. Y. Wang, and C. C. Wan, J. Electrochem. Soc., 145, 1207 (1998) https://doi.org/10.1149/1.1838440
  32. H. J. Rhoo, H. T. Kim, J. K. Park, and T. S. Hwang, Electrochim. Acta, 42, 1571 (1995) https://doi.org/10.1016/S0013-4686(96)00318-0