• Title/Summary/Keyword: Gear system

Search Result 1,182, Processing Time 0.023 seconds

A Study on the life and reliability of helical gear system (헬리컬 기어장치의 수명 및 신뢰성에 관한 연구)

  • 김하수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.265-270
    • /
    • 1997
  • Helical gear system is utilized to transmit motion between parallel shafts. The axial thrust loads on the shafts are existed. On each of the support shafts, at least one of the bearings should be able to support the axial loads. The reliability and life analysis are based on the two-parameter Weibull distribution lives of the component gears and bearings. The computer calculates the system lives and dynamic capacities of the components and their system. The system life is defined as the life of the component or the helical gear system at an output torque at which the probability of survival is ninety percent.

  • PDF

A Study on Automatic Generation for 3-Dimensional Geometry of Cylindrical Gear and Hob (원통 치차와 호브의 3차원 형상 자동 생성에 관한 연구)

  • Jeong, Tae-Hyeong;Ha, Yeong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • When designing a gear, designers determine basic dimensions of a gear with transmitted power considering strength, interference and so on. But, designers can not easily obtain the tooth profile generated by dimensions as well as the geometry of generating hob for cutting the tooth profile. In order to resolve these problems, an automatic design system creating not only the solid model of a gear but also that of the generating hob using the design parameters of dimensions is developed. Through the developed system, designers system, designers can improve the efficiency of design and satisfy the variable requirements of design as well. In this research, the three-dimensional solid models for spur and helical gears are generated considering the design parameters. Besides, those for generating hob regarding the design parameters of hob is created automatically. The system is developed by using Visual Basic and its three-dimensional geometric modeling module is constructed by using SolidWorks.

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.

Formal Verification of Twin Clutch Gear Control System

  • Muhammad Zaman;Amina Mahmood;Muhammad Atif;Muhammad Adnan Hashmi;Muhammad Kashif;Mudassar Naseer
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.151-159
    • /
    • 2024
  • Twin clutch model enables the power-shifts as conventional planetary automatic transmission and eradicates the disadvantages of single clutch trans- mission. The automatic control of the dual clutches is a problem. Particularly to control the clutching component that engages when running in one direction of revolution and disengages when running the other direction, which exchange the torque smoothly during torque phase of the gearshifts on planetary-type automatic transmissions, seemed for quite a while hard to compensate through clutch control. Another problem is to skip gears during multiple gearshifts. However, the twin clutch gear control described in ["M Goetz, M C Levesley and D A Crolla. Dynamics and control of gearshifts on twin clutch transmissions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2005"], a significant improvement in twin clutch gear control system is discussed. In this research our objective is to formally specify the twin clutch gear control system and verify it with the help of formal methods. Formal methods have a high potential to give correctness estimating techniques. We use UPPAAL for formal specification and verification. Our results show that the twin clutch gear control model partially fulfills its functional requirements.

Analysis of Planocentric Gear

  • Kim, H.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • The planocentric gear, known as wobble mechanism, has been used for speed reducing mechanism as an ingenious mechanism. The modem application can be found in the backrest adjusting mechanism of a vehicle reclinable seat, fluid pumps and aircraft hoist and winches. Higher speed reduction ratios, high load capacity, lower weight, and compactness are the main advantages of this gear. This paper presents velocity and static force analysis to investigate the friction lock of the planocentric gear. The rectilinear tooth profile is used to maximize the speed reduction ratio. The equivalent linkage system is used for the analysis of instantaneous motion. As the results, the transmission efficiency of the planocentric gear is found and the friction lock of the system is determined for the friction coefficients of journals. A numerical example that illustrates the developed analysis is presented.

  • PDF

A Study on Development the Dynamic Model to Misaligned Gear Coupling (I) - The Focus on Development of Dynamic Model to n Gear Coupling (정렬불량을 가진 기어 커플링의 동역학적 모델 개발에 관한 연구 (I) - 기어 커플링의 동적모델 구축을 중심으로-)

  • Kim, Byung-Ok;Kim, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.857-863
    • /
    • 2003
  • In rotating machinery, unbalance and misalignment are major concerns in vibration. Unbalance can be eliminated by balancing procedure to some degree. but little work has been done on the vibrations that occur in a misaligned rotor system. Currently, no generalized theoretical model based on a rotor system with flexible coupling is available to describe the vibrations caused by misalignment. As a part of systematic investigation on the misalignment, first of all, the study on flexible coupling with misalignment should be preceded. In this study, the geometry and reaction force and moment of a gear coupling with misalignment was investigated, also the theoretical model of a gear coupling with misalignment was presented by using the relationship between geometry and moment of gear coupling. It is expected that the proposed procedure can be applied to derive the theoretical model of other couplings.

Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice (오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가)

  • Hwang, Jaeup;Bae, Jaesung;Hwang, Jaihyuk;Hong, Yehsun;Park, Sangjoon;Chung, Taekyong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

Research on Landing Impact Characteristic Of Multi-Wheel Bogie Landing gear's Truck

  • Cao, Xin;Jia, Yuhong;Tian, Jiajie
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • Taking the four-wheel bogie landing gear as an example, the force status of truck-like landing gear during the landing impact was analyzed and the simulation model of four-wheel bogie landing gear was established. Firstly, a landing gear prototyping model was established using CATIA and imported to LMS Virtual.lab. Secondly, dynamic analysis of the landing impact was simulated with the established model. Finally, with the help of LMS Virtual.lab's parametric design ability, the effects of landing approach and truck pitch angle on the landing performance, truck motion and truck beam strength were studied. These conclusions will be useful to the design and analysis of the truck.

Development of a Design System for Multi-Stage Gear Drives (1st Report : Procposal of Formal Processes for Dimensional Design of Gears) (다단 치차장치 설계 시스템 개발에 관한 연구(제 1보: 정식화된 제원 설계 프로세스의 제안))

  • Jeong, Tae-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.202-209
    • /
    • 2000
  • In recent years the concern of designing multi-stage gear drives increases with the more application of gear drives in high-speed and high-load. until now however research on the gear drive design has been focused on single gear pairs and the design has been depended on experiences and know-how of designers and carried out commonly by trial and error. We propose the automation of the dimensional design of gears and the configuration design for gear arrangement of two-and three-stage cylindrical gear drives. The dimensional design is divided into two types of design processes to determine the dimensions of gears. The first design process(Process I) uses the total volume of gears to determine gear ratio and uses K factor unit load and aspect ratio to determine gear dimensions. The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and dimensions. Process I and II employ material data from AGMA and ISO standards respectively. The configuration design determines the positions of gears to minimize the volume of gearbox by simulated annealing algorithm. Finally the availability of the design algorithm is validated by the design examples of two-and three-stage gear drives.

  • PDF

Deformation Characteristics of Gear System with a Profile Shift Coefficient Preserving Center Distance (중심 거리 불변의 전위 계수를 적용한 기어 시스템의 변형 특성 해석)

  • Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.194-199
    • /
    • 2003
  • In this paper, elastic deformations of several gear teeth are analyzed. The contact between a gear and pinion is modeled as a contact problem. The deformation overlap, which is defined as the interference due to deformation of gear teeth, is defined to represent the deformation characteristics of profile shifted spur sear system. The calculated deformation overlap shows teeth interference in the deformed state of a Rear system.