• Title/Summary/Keyword: Gear mesh stiffness

Search Result 37, Processing Time 0.025 seconds

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

A Simulation for the Critical Speeds of a Geared Rotor System with Time Varying Mesh Stiffnesses and Bearing Flexibilities. (시 변화 물림 강성도와 베어링 유연도를 고려한 기어-로터의 위험 속도 시뮬레이션)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.39-48
    • /
    • 1999
  • A finite element model of geared rotor system with flexible bearings were used to simulate the critical speeds and to investigate the effects of bearing coefficients on the dynamic behaviors of the systems. The finite element model includes the effects of tooth mesh stiffness, gyroscopic moment, rotary inertia, shear, and torque of the shaft. The gear mesh was modelled as a pair of rigid disks connected by a spring of time varying stiffness. The time varying mesh stiffness results in the abrupt change of the critical speeds of spur geared systems. As the bearing stiffness increases, critical speeds increase rapidly in case of stiff shafts, compared with flexible shafts.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

Effects of Bearing Internal Clearance on the Load Distribution and Load Sharing in the Pitch Reducer for Wind Turbines (베어링 내부 틈새가 풍력발전기용 피치 감속기의 하중 분포와 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Kil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The pitch reducer consists of several planetary gearsets, and they should have good load distribution over gear tooth flank and load sharing among the planets to improve the durability. This work investigates how bearing internal clearances influence both the load distribution over the gear tooth flank and the planet load sharing. A whole system model is developed to analyze a pitch reducer. The model includes non-linear mesh stiffness of gears, non-linear stiffness of bearings. The results indicate that the face load factor and mesh load factor decrease, and the fatigue life of output shaft bearings increase as bearing internal clearances of output shaft decrease. Therefore, the internal clearance of output shaft bearing must be considered when designing the pitch reducer for wind turbines.

Mode Characteristics of Spur Gears and Ball-Bearing Stiffness (볼 베어링의 강성과 스퍼기어 계의 모드 특성)

  • Park, Chan IL
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.489-495
    • /
    • 2016
  • This study focuses on a detailed ball-bearing model for spur gears. The nonlinear ball-bearing stiffness with radial clearance is derived and calculated. The bearing stiffness is used to the 3-degree-of-freedom (DOF) spur gear system model. The mode characteristics of the gear system model are analyzed and verified by performing finite-element analysis (FEA). From the results, the bearing stiffness on the radial clearance was more sensitive under low-load conditions compared to high-load conditions. The bearing stiffness significantly affected the gear dynamics in the low-frequency region, while the mesh stiffness affected the high natural frequency.

Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect (기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성)

  • Lee, An-Sung;Ha, Jin-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

An investigation on development of the planetary gearheads for small precision mechanism (소형 정밀 메카니즘을 위한 유성 감속기 개발에 대한 연구)

  • Kim, Joo-Han;Chung, Jung-Kee;Sung, Ha-Kyeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.723-728
    • /
    • 2003
  • Planetary gearheads are widely used in the transmissions of samll precision mechanism, automation, robotics, heavy machinery and marine vehicle . Planetary gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. And, planetary gearheads are typically specified in application where space is limited. In till study included planetary type gearheads design, manufacture, efficiency test. Especially, this time performed gear mesh stiffness simulation and vibration analysis for planetary gearheads.

  • PDF