• Title/Summary/Keyword: Gear Housing

Search Result 76, Processing Time 0.028 seconds

Prediction of Noise & Vibration Effect of Agricultural Tractor Transmission at Design Stage

  • Kim, Jung-Hun;Kang, Young-Sun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.354-358
    • /
    • 1996
  • At design stage of the TRXI agricultural tractor transmission (New product of TongYang Moolsan Co., Ltd), the noise and vibration of the transmission were analyzed theoretically for the optimal design of the transmission . For this analysis, the finite element model was developed using a commercial computer software, ANSYS. The noise and vibration of the TRXI transmission housing were predicted by the modal analysis. Natural frequency of the TRXI transmission housing was ranged from 12.53Hz(1st mode ) to 30.05Hz(5th mode). The fifth mode took place at the bearing metal in the area of rear transmission housing and was very close to the gear mesh frequency (30.5Hz) of low rang gear at the low creep shifting . Based on the results , the bearing metal of the range shift housing was reenforced with the rib at design stage.

  • PDF

The effect of eccentricity between gear and housing in involute gear pump (인벌류트 기어펌프의 기어 편심에 따른 유동특성)

  • Kim, Sung-Hoon;Son, Hye-Min;Lee, Jae-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.631-637
    • /
    • 2013
  • The characteristics of involute gear pump with eccentric gap between gear tip and housing have been studied in terms of volumetric flow rate and/or flow efficiency. The analysis has been done with FLUENT/R-13 employing with k-e model for the turbulent flow under the given conditions of rotational velocity, gap distance and outlet pressure. The effect of parameters continues to be shown for the eccentric gear as same as for the concentric gear such that the volumetric flow rate (volumetric efficiency) increases as the increases of rotational velocity and decrease of gap distance and of outlet pressure. In the meantime, the shape of pressure build-up appears to be exponentially increase as gap distance decreases at upstream position. The pressure is rapidly developing in the upstream and remains almost constant thereafter in the downstream of circumferential flow path. This typical characteristics becomes more profound as eccentricity increases. The pump performance for the eccentric gear pump with minimum gap distance shows better than its concentric counterpart. However, it shows not for the concentric pump with minimum gap distance. Therefore, the gap reduction due to eccentricity may be positive for pump performance.

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.

Design of a Reduction Gear using Double-Enveloping Worm Gear (장구형 웜기어를 이용한 감속기 설계)

  • Kim, Tae Woo;Hwang, Young Kug;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.785-789
    • /
    • 2013
  • Worm gear sets may be either single- or double-enveloping. In a single-enveloping set, the worm wheel is cut into a concave surface, thus partially enclosing the worm when meshed. The double-enveloping worm gear is similar to the single-enveloping gear; however, the worm envelopes the worm gear. Thus both are throated. The double-enveloping worm gear has more of the tooth surface in contact than the single-enveloping worm gear. The larger contact area increases the load-carrying capacity. For this reason, double-enveloping worm gearing is widely applied in heavy-duty machinery, for applications including construction and metallurgy. In this paper, we designed a compact reduction gear that is highly efficient using double-enveloping worm gears. We calculated the bearing load in the worm gearing to select the bearing and the housing surface area according to the recommended values from AGMA(American Gear Manufacturers Association). The finite element method was used to assess the structural integrity.

A Study on Reduction of Noise and Vibration for Driving System of An Industrial Forklift (산업용 지게차의 구동부에 대한 소음/진동 저감 방안에 대한 연구)

  • Hong, Il-Hwa;Kim, Woo-Hyung;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.239-243
    • /
    • 2006
  • A noise/vibration of the forklift happens in the driving axle to charge the drive and are examined closely by an each reason. After this study consider a reduction method of a noise/vibration about the gear, axle, bearing and others, the purpose of this study is to reduce a noise/vibration for a stability of the total system. From the data to be measured through all experimental method, the problems of the gear, axle, bearing, housing and others are examined closely, and the forklift is derived the model to be the engineering. The Mechanism of the problem occurrence is examined through a palametric research about an each influence factor. Lastly, the resuls of this study propose the model to he improved.

  • PDF

A Study on the Radiated Noise of a Shaft-Plate System By an Axial Force (축방향력에 의한 축 플레이트계의 방사소음에 관한 연구)

  • ;Grosh, Karl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.524-529
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

Radiated Noise from a Shaft-Plate System by an Axial Force (축방향력에 의한 축 플레이트계의 방사소음)

  • ;Karl Grosh
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.908-913
    • /
    • 1998
  • Analogous problem for a gear dynamics where helical gears excite logitudinal forces in the shaft is studied. These shaft forces excite the supporting gear housing through bearing, causing structural vibration. In this study, shaft is modeled as a rod, and bearing is modeled by a massless spring. A simple model for gear housing is a clamped circular plate. To model this force transmission, the transfer functions from the shaft to a clamped circular plate are analytically derived by using the spectral method and four-pole parameter. Finally, radiated noise is computed, using the acoustic relations due to plate surface vibration.

  • PDF

Characteristics of Two Dimensional Flow in an Involute Gear Pump (인벌류트 기어펌프의 2차원 유동특성)

  • Kim, S.H.;Son, H.M.;Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.36-41
    • /
    • 2011
  • Analysis of two-dimensional flow in an involute gear pump has been done by using FLUENT. Analysis extended to the turbulent flow includes the mass flow rate with functions of pressure difference between inlet and outlet, rotational velocities of involute gear, and clearances between tip of gear and housing. In general mass flow rate decreases with decreasing rotational velocity, and with increasing clearance and pressure difference. The flow rate efficiency of gear pump, which is defined with the theoretical flow rate, has been presented in terms of the above parameters.