• Title/Summary/Keyword: Gear Driving System

Search Result 189, Processing Time 0.061 seconds

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

Structure and Conceptual Design of a Water-Hammering-Type Honsang for Restoration

  • Lee, Yong-Sam;Kim, Sang-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.221-232
    • /
    • 2012
  • We analyzed the manufacturing procedure, specifications, repair history, and details of celestial movements of the water-hammering type $Honsang$ (celestial globe). Results from our study on the remaining $Honsangs$ in China and Japan and on the reconstruction models in Korea were applied to our conceptual design of the water-hammering type $Honsang$. A $Honui$ (armillary sphere) and $Honsang$ using the water-hammering method were manufactured in $Joseon$ in 1435 (the 17th year of King $Sejong$). $Jang$ $Yeong-Sil$ developed the $Honsang$ system based on the water-operation method of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China. Water-operation means driving water wheels using a water flow. The most important factor in this type of operation is the precision of the water clock and the control of the water wheel movement. The water-hammering type $Honsang$ in $Joseon$ probably adopted the $Cheonhyeong$ (天衡; oriental escapement device) system of $Shui$ $y{\ddot{u}}n$ $i$ $hsiang$ $t'ai$ in China and the overflow mechanism of $Jagyeongnu$ (striking clepsydra) in $Joseon$, etc. In addition to the $Cheonryun$ system, more gear instruments were needed to stage the rotation of the $Honsang$ globe and the sun's movement. In this study, the water-hammering mechanism is analyzed in the structure of a water clock, a water wheel, the $Cheonhyeong$ system, and the $Giryun$ system, as an organically working operation mechanism. We expect that this study will serve as an essential basis for studies on $Heumgyeonggaknu$, the water-operating astronomical clock, and other astronomical clocks in the middle and latter parts of the $Joseon$ dynasty.

A Rotordynamic Analysis of a Industrial Centrifuge for Vibration Reduction (산업용 원심분리기의 진동저감을 위한 로터다이나믹 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • A rotordynamic analysis was performed with a decant-type centrifuge, which is a kind of industrial centrifuge. The system is composed of screw rotor, bowl rotor, driving motors, gear box, and support rolling element bearings. These rotors have a rated speed of 4300 rpm, and were modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis. Design goals are to achieve wide separation margins of lateral critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex analysis rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds and mode shapes, whirl natural frequencies, and unbalance responses under various balance grade. As a result of analysis, the rotordynamic analysis performed by separating a screw rotor and bowl rotor may cause an error in predicting critical speed of entire system. Therefore, the rotordynamic analysis of a coupled rotor combining a screw and bowl rotor must be performed in order to more accurately estimate dynamic characteristics of the decanter-type centrifuge as presented in this paper. Also, rolling element bearings with suitable stiffness should be selected to keep enough separation margin. In addition, in establishing balance grade of a screw and bowl rotor, ISO G2.5 balance grade is more recommended than ISO G6.3, in particular balancing correction of a screw rotor based on ISO G2.5 grade is strongly recommended.

The Development of Torque Sensor for Electric Bicycle (전기 자전거용 토크센서 개발)

  • Choi, Seong-Yeol;Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.873-880
    • /
    • 2011
  • As environmental pollution, global warming, and exhaustion of fossil fuel become global issue recently, there has been strong research motivation to develop green energy technology. Along the same line of motivation, some research efforts have been put into the development of environment-friendly bicycle equipped with various smart energy technologies to increase the usability of the bicycle as short-distance transportation. Among the technologies related with new generation bicycle, PAS (power assist system) is one of the most important systems that are essential in efficiently integrating human power and the electrical power supplied by electric motor driven by battery. In this paper, a novel torque sensor technology which is core component for PAS is proposed. Unlike existing technologies, strain gauges are attached to rear shaft directly under the hub bearings, which eliminates the requirement of slip-ring, Furthermore, the sensor is able to not only measure the torque transmitted to driving axle by human but also estimate the position of the gear to which the chain is currently engaged.

A Study of Circulating Water Channel (회유수조 제작 및 시험에 관한 연구)

  • CHANG Jee Won;HA Kang Lyeol;LEE Woon Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 1985
  • A circulation water channel with observational section of $4m{\times}2.4m{\times}1m(length{\times}breadth{\times}depth)$ and the maximum channel flow speed of 2 m/sec was designed for model tests of fishing gears. It consists of 6 sections evenly divided for easy connection. Two observational acryl windows of $1.2m{\times}1.5m$ and 2cm thick are provided. Steel deflection plates, equally spaced in 20-40cm, are fixed at corners of the channel to reduce the loss of water pressure head through the channel. The flow in the channel is controlled by D.C. motor control system with 50 H.P. driving propeller system. A series of model testing capabilities for fishing gear have been examined and the results are as follows. 1) The speed of water flow was in the range from zero to 2.3 m/sec. 2) The difference between the velocity of channel flow along the center line and that along both sides in the channel was less than 0.2 m/sec.

  • PDF

MECHANICAL POWER SYSTEM OF TONGCHEON-UI, AN ASTRONOMICAL CLOCK MADE BY HONG, DAE-YONG (홍대용이 제작한 천문시계 통천의의 기계동력시스템)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.43-57
    • /
    • 2020
  • Hong, Dae-Yong manufactured the Tongcheon-ui (Pan-celestial Armillary Sphere) with cooperating clock researcher Na, Kyeong-Jeok, and its craftsman An, Cheo-In, in Naju of Jeolla Province in 1760 ~ 1762. Tongcheon-ui is a kind of astronomical clock with an armillary sphere which is rotated by the force generated by a lantern clock's weight. In our study, we examine the lantern clock model of Tongcheon-ui through its description of the articles written by Hong himself. As his description, however, did not explain the detail of the mechanical process of the lantern clock, we investigate the remains of lantern clocks in the possession of Korea University Museum and Seoul National University Museum. Comparing with the clocks of these museums, we designed the lantern clock model of Tongcheon-ui which measures 115 mm (L) × 115 mm (W) × 307 mm (H). This model has used the structure of the striking train imitated from the Korea University Museum artifact and is also regulated by a foliot escapement which is connected to a going train for timekeeping. The orientation of the rotation of the going train and the striking train of our model makes a difference with the remains of both university museums. That is, on the rotation axis of the first gear set of Tongcheon-ui's lantern clock, the going and the striking trains take on a counterclockwise and clockwise direction, respectively. The weight of 6.4 kg makes a force driving these two trains to stick to the pulley on the twine pulling across two spike gears corresponding to the going train and the striking train. This weight below the pulley may travel down about 560 mm per day. We conclude that the mechanical system of Tongcheon-ui's lantern clock is slightly different from the Japanese style.

Parameter Selection for Condition Monitoring of LCD Conveyance Robot by Using Vibration Signals (진동신호를 이용한 LCD 반송로봇의 상태감시 파라미터 선정)

  • Jang, Jun-Hyuk;Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1593-1598
    • /
    • 2011
  • The purpose of this study is to perform parameter selection and develop a method for the condition monitoring of an LCD conveyance robot. To determine the vibration characteristics of the driving part of the robot, the gear mesh frequency (GMF) of the speed-reducing gearbox is calculated and confirmed by frequency analysis. In order to ensure reproducibility of the measured data, an appropriate working pattern is selected and experiments are carried out. For condition monitoring of the robot, a wireless measurement system is constructed and used in parameter selection, with the GMF as the center. A method involving the use of the standard deviation of the measured data and another method involving the use of multiple value of amplitude are proposed.

Efficiency Improvement of Transfer Drive Gear Bearings for an Automotive Automatic Transmission (승용차 자동변속기용 트랜스퍼 드라이브 기어 베어링의 효율개선 방법에 관한 연구)

  • Lee, In Wook;Han, Sung Gil;Gwak, Beom-Seop;Lee, Ho Sung;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.40-46
    • /
    • 2021
  • An automatic transmission of automobiles enables comfortable driving experience with lower transmission shifting jerks. However, the assembly structure is more complicated and requires additional components with lower efficiency than the manual transmission system. Extensive research has been conducted to improve the overall transmission efficiency by optimizing each component of the automatic transmission assembly. This study focuses on enhancing the friction torque of double angular contact ball bearings used in automatic transmission. The friction torque of the bearing varies with the operating conditions such as the operational load and rotating speed. Since reducing the friction torque of the bearing tends to deteriorate the durability of the bearing, it is necessary to design the bearing having a minimum required friction torque by determining the durability life of an automatic transmission assembly, In this study, the theoretical life and friction torque of conventional and newly-developed bearings are calculated. The difference in the friction torque between the new and existing bearings are also evaluated.

Design of Motor-driven Traveling System for High Clearance Working Machinery based on Tractive Performance and Hill Climbing Ability (견인 및 등판 성능을 통한 고소작업기계의 모터 주행장치 설계)

  • Lee, Sangsik;Jang, Seyoon;Kim, Taesoo;Nam, Kyoucheol;Park, Wonyeop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • In this study, an optimal design for motor-driven track type traveling system applied into high clearance working machineries in orchard is proposed. Tractive performance and hill climbing ability were predicted and evaluated for the optimal motor traveling system by taking into account of soil characteristics in orchard utilizing the high clearance working machineries. Design criteria for tractive performance were based on the traction force calculated from tractive effort subtracted by motion resistance, while hill climbing ability had its design criteria that fulfill the climbing 20% slope ground at a speed of 3km/h. Based on the evaluation results of traction and climbing ability, two DC48V, 4500rpm, 1.6kW AC motors were independently applied to both left and right side of orbits; each motor is designed to transmit power on driving sprocket of track type traveling system via 50:1 reduction gear ratio. The motor-driven track type traveling system developed in the study found to have 396 kgf of tractive force, which is 12.5% higher than climbing resistance at orchard soil having 20% slope ground (352 kgf), demonstrating sufficient tractive performance and hill climbing ability.