• Title/Summary/Keyword: Ge-Se-Te

Search Result 47, Processing Time 0.067 seconds

Properties and Crystallization Characteristics of Ge-Se-Te Glasses (Ge-Se-Te계 칼코지나이드 유리의 결정 생성 현상 및 특성)

  • Lee, Yong-Woo;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.239-247
    • /
    • 1995
  • Chalcogenide glasses with compositions of Ge10Se90-xTex(X=0~50 at.%) were prepared in order to investigate the effects of Te substitution on the transmission characteristics of Ge-Se glasses in the 8~12 ${\mu}{\textrm}{m}$ wavelength region. Absorption coefficients were observed to decrease with Te addition, indicating the improved transmission capabilities of Ge-Se-Te glasses as compared to binary Ge-Se glasses. XRD analysis of crystallized glasses suggested the formation of weaker Se-Te and/or Te-Te bonds with addition of Te substituting for Se in stronger Se-Se bonds. Incorporation of Te in excess of 20at% resulted in the formation of hexagonal Te phases when crystallized. It is speculated that the presence of Te-Te bonds with highly metallic bond character resulted in the enhanced crystallization tendencies of glasses. Fromation of Te-rich chains through gradual replacement of Se-Se with Se-Te and/or Te-Te bonds was further supported by decreases in glass transition and crystallization temperatures.

  • PDF

The electrical characteristics of GeTe thin films with various Se contents for switching deivces

  • Park, Goon-Ho;Son, Seo-Hee;Lim, Hyung-Kwang;Jeong, Doo-Seok;Lee, Su-Youn;Cheong, Byung-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.62-62
    • /
    • 2011
  • 현재 TFT의 주요 재료로 사용되는 비정질 실리콘은 전하 이동도가 매우 작아 고속 스위칭과 같은 고성능을 구현하기 어려우며 이동도 향상을 위해 고온 공정이 적용되야 하는 단점을 가지고 있다. 이러한 문제를 해결하기 위해 전하 이동도가 큰 박막재료를 바탕으로 박막 트랜지스터의 연구개발이 필요하며 이를 위한 해결책 중 새로운 스위칭 동작원리를 제공하며 고 이동도를 갖는 비정질 칼코지나이드 재료가 각광 받고 있다. 본 연구에서는 박막 스위칭 소자 응용을 위해 GeTe 재료를 기반으로 Se을 치환하여 GeSexTe1-x 박막을 제작한 후 소자의 전기적 특성을 평가하였다. GeTe 박막의 결정화 온도는 $187^{\circ}C$였으며 Se을 점진적으로 첨가한 GeSexTe1-x (X=0.2, 0.4, 0.6) 박막의 경우 각각 $213^{\circ}C$, $240^{\circ}C$, $287^{\circ}C$로 측정되었다. 이는 상대적으로 Ge과 Se의 결합에너지가 Ge과 Te의 결합에너지 보다 크기 때문에 Se 함량의 증가에 따라 비정질상의 안정성이 증가된 것으로 판단된다. 비교적 열적 안정성이 높은 3가지의 각각 다른 Se함량을 가진 Ge1.07 Se0.50 Te0.43, Ge1.07 Se0.68 Te0.26, Ge0.95 Se0.90 Te0.15의 소자를 제작하여 스위칭 특성을 분석하였다. GeTe의 경우 전형적인 메모리 스위칭 특성이 나타난 반면 위의 조성을 갖는 박막의 경우 반복적인 문턱 스위칭 특성을 보였다. 이는 Se이 첨가되면서 열적 안정성의 증가로 인해 스위칭이 일어난 후에도 비정질 상을 유지하기 때문이라 판단된다. 각각 제작된 소자에서 인가 전압의 증가와 펄스의 rising time 감소에 따라 더 빠른 스위칭 시간을 보였으며 Se함량이 감소함에 따라 스위칭 전압 또한 감소하는 것을 확인하였다. On 상태의 저항은 Se 함량에 따라 크게 차이가 없었지만 Off 상태의 저항은 Se 함량이 증가됨에 따라 증가되는 것을 확인하였다. 결과적으로 Se 함량에 따른 스위칭 특성의 최적화를 통해 고성능 스위칭 소자에 적용될 수 있을 것이라 판단된다.

  • PDF

Phase transition characteristics of As-doped $Ge_1Se_1Te_2$ film (As을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성연구)

  • Kim, Jae-Hoon;Kim, Hyun-Goo;Chung, Hong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1287-1288
    • /
    • 2008
  • In the past work, we showed that $Ge_1Se_1Te_2$ thin films provide a promising alternative for PRAM applications to overcome the problems of conventional $Ge_2Sb_2Te_5$ PRAM devices. However, $Ge_1Se_1Te_2$ thin films were unstable at SET and RESET process. Because of unstable state and its melting temperature, we alloyed As for 5wt%, 10wt% and 15wt% respectively. The phase transition temperature of $Ge_1Se_1Te_2$-only thin film is found to be 213$^{\circ}C$ while As 10wt% alloyed $Ge_1Se_1Te_2$ showed phase transition at 242$^{\circ}C$ with more stability.

  • PDF

Phase change properties of amorphous $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ chalcogenide thin films. (비정질 $Ge_1Se_1Te_2$$Ge_2Se_2Te_5$ 칼코게나이드박막의 상변화특성)

  • Chung, Hong-Bay;Cho, Won-Ju;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.118-119
    • /
    • 2006
  • In the present work, we investigate the basic physical and thermal properties and electrical resistance change due to phase change in chalcogenide-based $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films. The phase transition from amorphous to crystalline states, and vice versa, of $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films by applying electrical pulses have been studied. The reversible phase transition between the amorphous and crystalline states, which is accompanied by a considerable change in electrical resistivity, is exploited as means to store bits of information.

  • PDF

Improved Switching Properties of Sb-doped Ge-Se-Te Material (Sb-doping에 의한 Ge-Se-Te의 개선된 스위칭 특성)

  • Chung, Hong-Bay;Nam, Ki-Hyun;Koo, Sang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1260_1261
    • /
    • 2009
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/Sb only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-Sb.

  • PDF

Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films (비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성)

  • Chung Hong-Bay;Cho Won-Ju;Ku Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

Optical Properties of $Ge_1Se_1Te_2$ Amorphous Chalcogenide Materials ($Ge_1Se_1Te_2$ 비정질 칼코게나이드 물질의 광학적 특성)

  • Choi, Hyuk;Kim, Hyun-Koo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.83-84
    • /
    • 2006
  • For phase transition method, good recording sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, A retention time is very important part for phase transition. In our presentation wall, we chose Ge-Se-Te material to use a Se material which has good optical sensitivity than Sb. A Ge-Se-Te sample was fabricated and Irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light.

  • PDF

Optical properties of Ag/$Ge_1Se_1Te_2$ material with secondary Ag layer adoption (두 번째 Ag 층을 적용한 Ag/$Ge_1Se_1Te_2$ 물질의 광학적 특성 연구)

  • Kim, Hyun-Koo;Han, Song-Lee;Kim, Jae-Hoon;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.191-192
    • /
    • 2008
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Ge-Se-Te and Ag/$Ge_1Se_1Te_2$ samples are fabricated and irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light. Because of Ag ions, the Ag layer inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

  • PDF

$Ge_1Se_1Te_2$/As layer에 Ag 박막을 추가 삽입한 구조의 전기적 스위칭 특성

  • Nam, Gi-Hyeon;Jeong, Won-Guk;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.156-156
    • /
    • 2010
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/As only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-As with Ag layer.

  • PDF

A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films (Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구)

  • Nam, Ki-Hyun;Jeong, Won-Kook;Park, Ju-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF