• Title/Summary/Keyword: Gayageum

Search Result 28, Processing Time 0.031 seconds

Physical Modeling of a Sanjo Gayageum (산조 가야금의 물리적 모델링)

  • 정의필;조상진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.521-531
    • /
    • 2004
  • In this paper we developed the Physical modeling of the Sanio Gayageum using the improved digital waveguide theory. The frequency characteristics of the Gayageum body is implemented by an inverse filtering and the impulse response of the body. We obtained the synthesis sounds of the unit sound for the Gayageum using the simulation of the straight-line fits by the changes of the fundamental frequencies depending on the Amok location. Finally. we could obtain the virtual Sanio Gayageum sounds similar to the actual Gayageum by tuning the Amok positions.

Sound Synthesis of Gayageum by Impulse Responses of Body and Anjok (안족과 몸통의 임펄스 응답을 이용한 가야금 사운드 합성)

  • Cho Sang-Jin;Choi Gin-Kyu;Chong Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.102-107
    • /
    • 2006
  • In this paper, we propose a method of a sound synthesis of Korean plucked string instrument, gayageum, by physical modeling which use impulse responses of body and Anjok. Gayageum consists of three kinds of systems: string, body, and Anjok. These are a serial combination of linear time invariant systems. String can be modeled by digital delay line. Body and Anjok can be estimated by their impulse responses. We found three resonance frequencies in the body impulse response, and implemented resonator as body. Anjok was implemented as high pass filter in fundamental frequency band of gayageum. RMSEs of synthesized sounds are distributed from 0.01 to 0.03. It was difficult to distinguish the resulting synthesized sounds from the originals sound by ear.

  • PDF

Physical Characteristics of Silk Gayageum Strings on the Preparing Conditions (원사의 종류와 처리조건에 따른 가야금 현의 특성)

  • Kim Young Dae;Choi Tea Jin;Chung In Ma;Yi Ji-Yong
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • Gayageum and Geomungo are the traditional stringed music instrument in Korea. These strings are usually made of raw silk. This study was carried out to investigate the optimum condition for silk string producing method using several kind of silk and setting temperature of silk string. If the ply of strings and twisting condition were same, tenacity and elongation of every silk strings were similar, in spite of silk strings prepared by physically different raw silk. On the other hand, in setting treatment of twisted string, it was disclosed that the proper setting temperature of silk strings were 11$0^{\circ}C$ for 20 min.

Sound Synthesis of Gayageum using TMS320C6713 DSK (TMS320C6713 DSK 를 이용한 가야금 사운드 합성)

  • Cho, Sang-Jin;Oh, Hoon;Chong, Ui-Pil
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.435-438
    • /
    • 2005
  • In this paper, we implemented a system that is called sound engine in musical synthesizer and synthesized a sound of Gayageum using TMS320C6713 DSK. Sound engine consists of two parts: synthesis algorithm and processor. We improved physical modeling using digital waveguide as a synthesis algorithm and we used TMS320C6713 as a processor. The excitation signals that make timbre are stored in memory. When we input parameters, sound engine synthesizes sound of Gayageum. The experimental result shows that synthesized sounds are very similar to real sounds.

  • PDF

A Study on the Effects on Melody According to an Annual Ring on Gayageum (가야금의 나이테가 선율에 미치는 영향에 관한 연구)

  • Jung, Chan-Joong;Kang, Hee-Su;Bae, Myung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.879-880
    • /
    • 2008
  • Music can give pleasure to people according to a rhythm, and Musical instrument can make various sounds according to quality of the lumber. A string instrument makes sound by strings so it feels very soft and a brass makes to feel a high pitched tone. A gayageum makes sound by oscillation which is transferred to a resonator when a string is touched. And this sound is very soft and faint. Therefore, in this paper, we researched sound properties of gayageum according to quality of the lumber of musical instrument. As the result of researches, we found that melody is affected by the annual ring of the resonance lumber.

  • PDF

Physical modeling synthesizing of 25 strings Gayageum using white noise as exciter (화이트 노이즈를 익사이터로 이용하는 25현 가야금의 피지컬 모델링 신디사이징)

  • Bae, June;Kim, Jangyoung;Yang, Yoongi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.740-746
    • /
    • 2018
  • Up until now, attempts to produce computer instruments have been largely focused on two types of sampling methods and physical modeling. Since the sampling method removes much of the harmonics in the sampling process, the effect of exciter that emphasizing the harmonic of the strings are mini. However, the physical modeling method can produce a lot of harmonics, and by emphasizing the harmonics of a particular frequency band among these harmonics, it is possible to produce a sound more like a lively sound. In this paper, we propose a method of using white noise in realizing exciter emphasizing harmonics of pre - specified frequency band in prefectural physical modeling. And comparing the envelope and spectrum of the Gayageum sound, we confirmed that the physical modeling method with the exciter is more suitable for the actual Gayageum sound than the sampling method and the conventional physical modeling method.

Mechanical Properties of Silk Gayageum Strings on the Twisting Conditions (명주실 현의 꼬임수에 따른 특성)

  • Kim Young Dae;Choi Tea Jin;Woo Soon Ok;Yi Ji-Yong
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • The strings of Gayageum and Geomungo are usually made of raw silk. It needs good vibration as well as good durability to endure during play the Gayagum and Geomungo. This study was carried out to discuss some effects of twisting number of first and final twisting on the mechanical properties of silk Gayageum strings. Tenacity of strings were largely decreased proportionally with the increase of number of twisting of strings but elongation of strings were in the opposition direction. However, it was needed to hard twisting string for the good vibration. The proper S direction twisting velocity of moving twister during final twisting (Z direction) until three thread become one thread, was 40% of basic twister.

Sound Synthesis of Right-Hand Playing Styles Using Improved Physical Modeling of Sanjo Gayageum (개선된 산조 가야금의 물리적 모델링을 이용한 오른손 주법의 음 합성)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.362-369
    • /
    • 2006
  • In this paper, we improve a Physical modeling of sanio gayageum and synthesize sounds by right-hand playing styles. Parameters of loop filter are estimated from decay region of recorded sound. That results in improved accuracy and reduction of computational costs. Body is implemented to a resonator which has characteristics of main resonances extracted from impulse response. Residual signal with main resonances removed is used as excitation signal of proposed model. Amok alter is approximated to frequency response of amok and is implemented to the 15th order all-role digital filter. Beating (by middle and index finger) among the right-hand playing styles is represented by feedforward comb filter. Parameters of this filter are extracted from recorded sound. The synthesized sounds using improved physical model of sanjo gayageum. plucking and beating, are pretty similar to original sounds.

Development of Improved String Model for Instruments with Anjok (안족이 있는 악기의 개선된 현의 모델 개발)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.328-333
    • /
    • 2007
  • In this paper, we describe characteristics of a movable bridge called the Anjok and propose an improved string model which has delay line controller in physical modeling of the Gayageum. Movable bridge, the Anjok determines the length of vibrating string and transmits the vibration of each string to the body of the Gayageum. We analyze the variations in frequency domain and implement the Anjok model as parametric form using the first-order polynomial fitting in logarithmic scale graph, because the length of string changes fundamental frequency. In order to implement the Anjok model, frequency fitting, tension fitting and frequency fitting using leaky integrator are used. The frequency fitting using leaky integrator has the best results among those. Proposed string model with the Anjok model can represent real tuning system of the real Gayageum and the proposed model could synthesize sounds which is similar to original sounds.

Sound Engine for Korean Traditional Instruments Using General Purpose Digital Signal Processor (범용 디지털 신호처리기를 이용한 국악기 사운드 엔진 개발)

  • Kang, Myeong-Su;Cho, Sang-Jin;Kwon, Sun-Deok;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.229-238
    • /
    • 2009
  • This paper describes a sound engine of Korean traditional instruments, which are the Gayageum and Taepyeongso, by using a TMS320F2812. The Gayageum and Taepyeongso models based on commuted waveguide synthesis (CWS) are required to synthesize each sound. There is an instrument selection button to choose one of instruments in the proposed sound engine, and thus a corresponding sound is produced by the relative model at every certain time. Every synthesized sound sample is transmitted to a DAC (TLV5638) using SPI communication, and it is played through a speaker via an audio interface. The length of the delay line determines a fundamental frequency of a desired sound. In order to determine the length of the delay line, it is needed that the time for synthesizing a sound sample should be checked by using a GPIO. It takes $28.6{\mu}s$ for the Gayageum and $21{\mu}s$ for the Taepyeongso, respectively. It happens that each sound sample is synthesized and transferred to the DAC in an interrupt service routine (ISR) of the proposed sound engine. A timer of the TMS320F2812 has four events for generating interrupts. In this paper, the interrupt is happened by using the period matching event of it, and the ISR is called whenever the interrupt happens, $60{\mu}s$. Compared to original sounds with their spectra, the results are good enough to represent timbres of instruments except 'Mu, Hwang, Tae, Joong' of the Taepyeongso. Moreover, only one sound is produced when playing the Taepyeongso and it takes $21{\mu}s$ for the real-time playing. In the case of the Gayageum, players usually use their two fingers (thumb and middle finger or thumb and index finger), so it takes $57.2{\mu}s$ for the real-time playing.