• Title/Summary/Keyword: Gaussian function

Search Result 929, Processing Time 0.028 seconds

Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function (가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템)

  • Donghyeon Kim;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • This paper proposes an approach to detect abnormal data in automotive controller area network (CAN) using an unsupervised learning model, i.e. autoencoder and Gaussian kernel density estimation function. The proposed autoencoder model is trained with only message ID of CAN data frames. Afterwards, by employing the Gaussian kernel density estimation function, it effectively detects abnormal data based on the trained model characterized by the optimally determined number of frames and a loss threshold. It was verified and evaluated using four types of attack data, i.e. DoS attacks, gear spoofing attacks, RPM spoofing attacks, and fuzzy attacks. Compared with conventional unsupervised learning-based models, it has achieved over 99% detection performance across all evaluation metrics.

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Method for Feature Extraction of Radar Full Pulses Based on EMD and Chaos Detection

  • Guo, Qiang;Nan, Pulong
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • A novel method for extracting frequency slippage signal from radar full pulse sequence is presented. For the radar full pulse sequence received by radar interception receiver, radio frequency (RF) and time of arrival (TOA) of all pulses constitute a two-dimensional information sequence. In a complex and intensive electromagnetic environment, the TOA of pulses is distributed unevenly, randomly, and in a nonstationary manner, preventing existing methods from directly analyzing such time series and effectively extracting certain signal features. This work applies Gaussian noise insertion and structure function to the TOA-RF information sequence respectively such that the equalization of time intervals and correlation processing are accomplished. The components with different frequencies in structure function series are separated using empirical mode decomposition. Additionally, a chaos detection model based on the Duffing equation is introduced to determine the useful component and extract the changing features of RF. Experimental results indicate that the proposed methodology can successfully extract the slippage signal effectively in the case that multiple radar pulse sequences overlap.

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution (고응력 분포에 새로운 광탄성실험 하이브릿법 적용)

  • Hawong, Jai-Sug;Tche, Konstantin;Lee, Dong-Hun;Lee, Dong-Ha
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

  • PDF

Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle (K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method (퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어)

  • 한성현;서운학;조길수;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF