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Method for Feature Extraction of Radar Full Pulses Based
on EMD and Chaos Detection

Qiang Guo and Pulong Nan

Abstract: A novel method for extracting frequency slippage sig-
nal from radar full pulse sequence is presented. For the radar full
pulse sequence received by radar interception receiver, radio fre-
quency (RF) and time of arrival (TOA) of all pulses constitute a
two-dimensional information sequence. In a complex and inten-
sive electromagnetic environment, the TOA of pulses is distributed
unevenly, randomly, and in a nonstationary manner, preventing ex-
isting methods from directly analyzing such time series andeffec-
tively extracting certain signal features. This work applies Gaus-
sian noise insertion and structure function to the TOA-RF informa-
tion sequence respectively such that the equalization of time inter-
vals and correlation processing are accomplished. The components
with different frequencies in structure function series are separated
using empirical mode decomposition. Additionally, a chaosdetec-
tion model based on the Duffing equation is introduced to deter-
mine the useful component and extract the changing featuresof
RF. Experimental results indicate that the proposed methodology
can successfully extract the slippage signal effectively in the case
that multiple radar pulse sequences overlap.

Index Terms: Duffing equation, empirical mode decomposition,
feature extraction, Gaussian noise insertion, structure function.

I. INTRODUCTION

In a complex and dense signal environment, radar signal sort-
ing is the core technology of radar signal detection system.This
technology involves feature extraction of radar signals. Tradi-
tional sorting methods usually depend on feature parameters,
such as time of arrival (TOA), radio frequency (RF), pulse width
(PW), angle of arrival (AOA) and pulse amplitude (PA) [1], [2].
However, with the rapid development of radar technology, the
number of emitters increases considerably, resulting in signals
overlapping more severely and the modulation forms of sig-
nals becoming more complicated. Many new radar systems are
simultaneously provided with slippage, transition and random
agility of different parameters (including RF, PW, and pulse
repetition interval). Additionally, the between-class boundaries
of signals described by conventional feature parameters over-
lap severely. For frequency slippage signals whose frequency
changes periodically with time, no traditional five-parameter
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sorting method can realize signal extraction effectively.There-
fore, the radar signal sorting based on five traditional parameters
is no longer applicable in a modern electronic battlefield.

Recent methods for extracting feature parameters of radar sig-
nals include atom decomposition [3]–[6], fuzzy function [7], [8],
relative non-ambiguity phase restoral [9], [10], support vec-
tor machine (SVM) classification [11]–[13] and difference au-
tocorrelation feature extraction [14]. Atom decomposition lin-
early represents the optimal form of received signal using sev-
eral functions in atom decomposition dictionary. For fuzzyfunc-
tion sorting methods, the extracted characteristic vectorof main
ridge slice is constituted by the direction of main ridge, slice
barycenter and radius of inertia. The vector can excellently re-
flects waveform structures of different signals. The approach us-
ing the relative non-ambiguity phase restoral implements non-
ambiguity of signal phase and differential operation. A fur-
ther intra-pulse modulation pattern is recognized on the basis of
the analysis of frequency behavior. In sorting methods based on
SVM, SVM is employed as a classifier to automatically distin-
guish different signals and has proven to be capable of achieving
a high correct recognition rate. Difference autocorrelation fea-
ture extraction methods implement the correlation processof a
difference operation of radar emitter signals. The optimalsepa-
rable feature vector used to classify signals is obtained accord-
ing to the envelope characteristics of the autocorrelationfunc-
tion. The above methods, however, cannot directly analyze the
pulse sequence intercepted by a radar signal receiver because in-
tervals between pulses are not equivalent, which leads to great
difficulty when extracting a slippage signal. Aiming at resolving
the dilemma, this work converts the feature extraction of slip-
page signal to the problem of extracting a periodic signal inthe
case of low SNR. An approach based on empirical mode decom-
position (EMD) and chaos detection model is presented to ex-
tract slippage signal in radar full-pulse sequence. In thispaper,
a structure function series with equal intervals can be achieved
first by preprocessing. Next, the obtained structure function se-
ries is decomposed to several intrinsic mode functions (IMFs)
by adopting EMD. Then, an attempt is made to apply a chaos
detection model based on the Duffing equation to each IMF. If
the phase track of one IMF has a periodic status, then we can de-
termine that the IMF with the most significant periodicity cor-
responds to the frequency feature of the slippage signal. The
slippage signal is finally extracted. Simulation results validate
the effectiveness of the approach.

II. PREPROCESSING

A. Gaussian Noise Insertion

For a radar full-pulse sequence received by a radar intercep-
tion receiver, the RF and TOA parameters constitute a two-
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dimensional information series. It is cumbersome to directly an-
alyze such a time series because the distribution of the TOA in
this series is uneven, random, and nonstationary. For this rea-
son, we change the original time series into a new one that has
equal time intervals by inserting Gaussian noise.

The specific procedures are as follows: supposek1 is the se-
rial number of a pulse. The domain ofk1 is [1,K1], whereK1

represents the total number of pulses. The RF and TOA param-
eters of the received radar full pulse sequence are defined tobe
functions with respect tok1, and denoted to bef(k1) andT (k1)
respectively.

The mean RF of the sequence can be expressed as:

f̄ =
1

K1

K1
∑

k=1

f(k1) (1)

The maximum range off(k1) acting on[1,K1] is defined asRf :

Rf = sup
1<i,j<K1

|f(i)− f(j)| (2)

and the noise to be inserted follows a Gaussian distribution:

X ∼ N

(

f̄ , (
Rf

6
)2
)

(3)

where f̄ denotes the expectation of the Gaussian distribution,
andRf denotes the confidence interval. The upper percentile of
the Gaussian distribution is3δ (δ represents the standard devia-
tion), i.e. the degree of confidence is99.7%, so the variance of
the Gaussian distribution is given byδ2 = (

Rf

6 )2.
To guarantee that the noise-inserted time series is equal-

interval and as short as possible, we let the greatest common
divisorG be the interval of the noise-inserted series:

G = gcd[T (k1)− T (k1 − 1)] , 1 < k1 < K1. (4)

Hence, the RF of the new time series can be attained:

S1(k2) =

{

f(k1) , k2 = T (k1)/G
X , otherwise

(5)

wherek2 ≤ K2 = T (k1)/G, k2 andK2 represent the serial
number and total number of the noise-inserted time series, re-
spectively.

B. Structure Function

The random process derived above, defined asS1(m) (m =
k2×G is TOA), has significantly low SNR. Hereby, the structure
function involved in fractal geometry is introduced toS1(m) so
that the correlation processing reduces the noise and enhances
the energy of weak periodic signal in random process [15]–[17].

Taking the incremental variance of random processS1(m) as
a structure functionS2(h) and employing the structure function
to the theory of fractional Brownian motion (FBM) , we have

S2(h) = 〈|S1(x+ h)− S1(x)|
2
〉 ∼ |h|

2(2−D) (6)

where〈· · ·〉 denotes the mean of time,D is the fractal dimen-
sion, andh is the process increment. As a statistic of the random

process, the structure functionS2(h) represents the variance of
the increment ofS1(m). The structure functionS2(n) of the
noise-inserted random seriesS1(m) is defined to be

S2(n) =
1

M

M
∑

i=1

|S1(i + n)− S1(i)|
2 (7)

whereM = K2 − n. nmax, the length of the structure func-
tion seriesS2(n), can be properly chosen as long as it satisfies
nmax < K2. K2 denotes the length of the random seriesS1(m).

The SNR of original series is very low. Additionally, there
exists no impact on the frequency characteristics of the peri-
odic signal in a random process after multiple times of correla-
tion processing. Therefore, we can further calculate the structure
function ofS2(n) to improve the SNR.

To validate the effectiveness of the correlation processing in-
volving the structure function, suppose a mixture of a sinusoidal
signalx = sin(314t) and Gaussian white noise. Then we have
y = x+noise with SNR =−10 dB, sampling atFs = 104 Hz,
which is shown in Fig. 1. Fig. 2 shows the structure function af-
ter twice of two correlation processing procedures. Obviously,
the structure function has an excellent denoising effect when the
SNR is low and can highlight the periodicity of a useful signal
submerged in noise.

Time (s)

Fig. 1. Mixture of sinusoidal signal and Gaussian noise.

Time (s)

Fig. 2. Structure function after twice of correlation processing.
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III. FEATURE EXTRACTION

A. Empirical Mode Decomposition

The structure functionS2(n) is still a nonstationary process
after preprocessing. In this method, EMD is adopted so as to
decompose the structure function into IMF components, which
contain high-frequency components and low-frequency compo-
nents [18].

In fact, EMD is a process in which the components with dif-
ferent fluctuations or trends are separated by turn. The factthat
scale features of different IMF components differ allows toana-
lyze the signal particularly.

IMF components have to satisfy the following two conditions:
in the entire data set, the number of extrema and the number of
zero crossings must either be equal or differ at most by one; at
any point, the mean value of the envelope defined by the lo-
cal maxima and the envelope defined by the local minima is
zero [18].

In the following, we specify the EMD process of the structure
function seriesS2(n). This process involves the envelopes of lo-
cal maxima and local minima ofS2(n). Once all of the extrema
are known, the cubic spline function connecting all the local
maxima shapes the upper envelope. The lower envelope can be
gained by repeating the same procedure for all the local minima.
Define the mean value of the upper and lower envelopes asm1.
Subtractingm1 fromS2(n), we derive

S2(n)−m1 = h1. (8)

If h1 does not satisfy two basic conditions of the IMF mentioned
above, it must besifted repetitively. Takeh1 as a data set, and
let m11 be the mean of the envelope ofh1. This procedure can
be expressed as

h11 = h1 −m11. (9)

In order to remove the ride waves and make the data more
symmetrical, we must repeat thesifting process until thekth
equation ofh1k = h1(k−1) − m1k meets two basic conditions
of IMF. Additionally, defineIMF1 = h1k, i.e., IMF1 is the
first IMF component separated from the structure function series
S2(n).

We have to limit the stopping condition of thesifting process
so that IMF is meaningful physically. The stopping condition
can be defined to be the standard deviationSD of h1(k−1) and
h1k:

SD =
T
∑

t=0

∣

∣h1(k−1) − h1k

∣

∣

2

h2
1(k−1)

. (10)

WhenSD is less than the set value, thesifting process will
stop. According to [18],SD is set to be 0.25 in this work.

From thesifting process above, we see thatIMF1 includes
the component with the smallest scale or shortest period in the
structure function seriesS2(n). S2(n) minusIMF1 is the re-
maining componentr1:

r1 = S2(n)− IMF1. (11)

Supposing that there still exist several long-periodic components
in r1, repeat thesifting process forr1, which is considered as a

new data set. Repeating the procedures above, we have

r2 = r1 − IMF2,
r3 = r2 − IMF3,

...
rN = rN−1 − IMFN .

(12)

The decomposition stops whenrN is monotonous in that it can-
not be decomposed further. The last remaining componentrN
is regarded as the trend component. Combining (11) and (12),
S2(n) is expressed as:

S2(n) =

N
∑

j=1

IMFj(n) + rN (n). (13)

Thus, the structure function series that is obtained by prepro-
cessing the two-dimensional time series comprised of RF and
TOA is decomposed into an IMF set and remaining component.

B. Chaos Detection of Periodic Signal

After EMD decomposition of structure function seriesS2(n),
we take into account that it is difficult to precisely determine
which IMF corresponds to the frequency feature of the slippage
signal. Hence, to effectively detect the periodic signal, we in-
troduce the chaos detection model of a periodic signal basedon
the Duffing equation [19], [20].

The original form of the Duffing equation is:

ẍ+ kẋ+ αx+ βx3 = f(x, t) (14)

wherek > 0 represents the damping ratio,αx+ βx3 represents
the nonlinear restoring force, andf(x, t) represents the periodic
disturbing force. In general, the periodic disturbing force is set
to bef(x, t) = γ cos(ωt). γ cos(ωt) is the built-in signal;γ
denotes the amplitude of the built-in signal;ω, the frequency of
the built-in signal, is equal to the frequency of the signal to be
measured, which is usually unknown. Therefore, we letf(x, t)
be 0.

To suppress the chaotic motion of the Duffing chaotic oscilla-
tor, a weak periodic disturbance is added to the coefficient of x3

in (14). Equation (14) becomes

ẍ+ kẋ− x+ b[1 + η cos(ω1t)]x
3 = 0 (15)

whereη cos(ω1t) is the system perturbation.η (≪ 1) andω1

denote the amplitude and frequency of the perturbation respec-
tively.

In the case ofη = 0, i.e., there is no perturbation, the sys-
tem is in the strange attractor state. Once a periodic perturbation
is added to the coefficient of the nonlinear cubic termx3, the
chaotic state is suppressed, and the system transitions from the
chaotic state to the periodic state. Considering the sensitivity of
the signal to be measured, as well as the stability of system,we
addx5 to the nonlinear term and simultaneously take the peri-
odic disturbance factor as its coefficient. Because each IMFis
discrete, the mathematical model of the detecting system isex-
pressed as

ẍ+ kẋ− x3 + [1 + aδT (n)]x
5 = 0 (16)
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whereaδT (n) is the discrete periodic signal to be measured.
Represent the state equations of (16) as:

{

ẋ = y,
ẏ = x3 − [1 + aδT (n)]x

5 − ky.
(17)

Then, (17) is used to detect each IMF. If, for one of the IMFs,
the chaotic attractor appears in phase plane, we can confirm that
this IMF corresponds to the slippage feature of slippage signal.

IV. EXPERIMENTS

A. Effectiveness Verification and Results Analysis

The efficiency and accuracy of the presented approach are
evaluated based on experiments involving a set of radar pulse se-
quences. The sequence is comprised of four radar signals. Inthis
set, the RF parameter of radar 1 changes according to sine reg-
ulation with a frequency of70Hz; the RF parameters of Radar
2 and Radar 4 are randomly agile, and that of Radar 3 switches
randomly among 10 setting frequency points. The PRF jitter
of the slippage signal is set to be 1%. Parameter informationis
listed in Table 1.

Table 1. Simulation data of radar full pulse sequence.

Radar Radio frequency Pulse repetition
number (MHz) frequency (Hz)

1 2300 + 50sin(2π × 70t) 990− 1010
(Slippage frequency) (PRF jitter)

2 2550− 2650 300− 400
(Agile frequency) (PRF jitter)

3 2050− 2150 800− 1500
(Agile frequency) (PRF stagger)

4 2350− 2550 1000− 1200
(Agile frequency) (PRF jitter)

The original TOA-RF information sequence is shown in
Fig. 3. Obviously, intervals between adjacent pulses are unequal
and random. It is quite difficult for existing methods to directly
analyze such a time series. To simplify the process of the series,
we insert Gaussian noise into the original TOA-RF information
sequence as shown in (5) and derive time seriesS1(m), which
is shown in Fig. 4. From this figure, it can be seen that not only
the equalization of the pulse intervals is accomplished, but the
features of the original sequence are not affected.

The SNR of the noise-inserted pulseS1(m) is quite low and
the useful periodic component is submerged to a great extent,
so it is necessary to denoise the new time series. Here, we im-
plement the correlation processing ofS1(m) by calculating its
structure function. Because multiple correlation processing has
no influence on the frequency characteristic of the periodiccom-
ponent in the noise-inserted pulse sequence, the correlation pro-
cessing ofS1(m) can be repeated more than once to improve
the denoising effect and highlight the low-energy periodiccom-
ponent is highlighted. Taking into account that excessive time
consumption results from enormous computational burdens,we
choose to repeat correlation processing three times as a result of
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z
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Time (s)

Fig. 3. Original pulse sequence.

Time (s)

R
F
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M
H
z
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Fig. 4. Noise-inserted pulse sequence.

N

Fig. 5. Structure function S2(n) after repeating correlation processing
three times.

cost-benefit analysis. The structure function seriesS2(n) after
correlation processing is shown in Fig. 5.

The structure functionS2(n) in Fig. 5 remains a nonstation-
ary series, although the SNR rises substantially.S2(n) is still a
mixture of components with different frequencies. Therefore,
the structure function series is to be decomposed by EMD, and
the results are shown in Fig. 6. From Fig. 6, we can see that
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the structure functionS2(n) is decomposed into four IMFs with
different frequencies and a residue componentr5. Among these
five components, the frequency ofIMF1 is the highest and that
of IMF4 is the lowest. Residue componentr5 is the trend term.

N

IM
F
1

IM
F
2

IM
F
3

IM
F
4

r5

Fig. 6. All IMF components derived by the EMD process of S2(n).

To determine which IMF is periodic, we import all IMFs de-
rived by EMD into the chaos detection model of a periodic sig-
nal (17) in turn. Before chaos detection, the initial systeminitial
and the amplitude of the signal to be measured must be set prop-
erly: Let the initial system and amplitude bex0 = [0, 5]T and
a = 1, respectively. The phase track of each IMF is shown in
Fig. 7.

Orbit in phase plane corresponding to IMF1-IMF4

x(1)

x(1)

x(1)

x(1)

x
(2

)
x
(2

)
x
(2

)
x
(2

)

Fig. 7. Phase track of each IMF in phase plane.

From Fig. 7, only the trajectory ofIMF3 takes on periodic
status in the phase plane, whereas the remaining three IMFs
have chaotic trajectories. Thus, we conclude thatIMF3 is peri-
odic and describes the frequency feature of the slippage signal.

To validate the accuracy of the detection results, we extract
IMF3 and transform it into the time-domain. The time-domain
chart is shown in Fig. 8. Then, the spectrum ofIMF3 is ob-
tained by means of the fast Fourier transform (FFT), which is
shown in Fig. 9. Fig. 9 shows that the frequency of the signal
corresponding toIMF3 is 70 Hz. The results are consistent
with the setting frequency.

Time (s)

Fig. 8. Time-domain chart corresponding to IMF3.

Frequency (Hz)

Fig. 9. Frequency spectrum of the signal corresponding to IMF3.

The simulation results validate the effectiveness and accuracy
of the presented feature extraction approach. Although theslip-
page signal is almost submerged in the TOA-RF information
sequence completely, this method based on EMD and chaos de-
tection not only succeeds in extracting the slippage signal, but
calculates the slippage frequency. In addition, it remainseffec-
tive in the case of lost pulses. Inspired by the proposed method,
we can implement feature extraction with a two-dimensionalin-
formation sequence comprised of TOA and one of other feature
parameters.

B. Performance When Pulse Repetition Frequency (PRF) Jitters

In a complex electromagnetic environment, the TOA param-
eter of radar pulses is influenced by various sources of interder-
ence. Because the TOA and PRF has the following relationship,
it can be concluded that the instability of PRF inevitably deteri-
orates the performance of the proposed method.

TOAn = TOAn−1 + 1/PRF (18)

In this section, we examine the performance of the proposed
method in the case that the PRF jitters by calculating and ana-
lyzing the success rates. Assume that the PRF of the frequency
slippage signal jitters from 0% to 20%. The simulation experi-
ment given by Section 4.1 is independently repeated 200 times
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for each jitter case. Then, the success rates are calculatedand
shown Fig. 10.

S
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te

PRF jitter (Hz)

Fig. 10. Success rates in case of varying PRF jitter.

In Fig. 10, the success rate remains above 0.9 when the PRF
jitter is not greater than 14%, whereas the success rate descends
drastically and remains below 0.8 when the PRF jitter is greater
than 18%. According to the results, we conclude that the pro-
posed methods can reach the expected degree in the case that the
PRF jitters within 15%, which is adaptive to general situation.

V. CONCLUSION

Signal sorting is a key technology in the field of electronic
countermeasures, and is also the premise of identification and
analysis of radar emitter signals. Along with the continuous in-
crease in signal density and rapid augmentation of the number
of radars, different radar signals overlap more severely, and the
characteristics of intercepted radar emitter signals are unknown.
As a result, the traditional methods work quite inefficiently. In
the case that the parameters overlap too severely in a certain
range, even clustering methods are inefficient. Combining EMD
and chaos detection for the first time, this work extracts the
frequency slippage signal in dense and complex full-pulse se-
quences. Simultaneously, the slippage frequency of a slippage
periodic signal, which is an important sorting feature hidden
in full-pulse sequences, is extracted. This method can alsobe
adapted to analyze the two-dimensional information constituted
by other sorting parameters and TOA, not just RF and TOA.
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