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Method for Feature Extraction of Radar Full Pulses Based
on EMD and Chaos Detection

Qiang Guo and Pulong Nan

Abstract: A novel method for extracting frequency slippage sig-
nal from radar full pulse sequence is presented. For the radafull
pulse sequence received by radar interception receiver, tho fre-
quency (RF) and time of arrival (TOA) of all pulses constitute a
two-dimensional information sequence. In a complex and irgn-
sive electromagnetic environment, the TOA of pulses is digbuted
unevenly, randomly, and in a nonstationary manner, prevening ex-
isting methods from directly analyzing such time series ancffec-
tively extracting certain signal features. This work applies Gaus-
sian noise insertion and structure function to the TOA-RF informa-
tion sequence respectively such that the equalization ofrtie inter-
vals and correlation processing are accomplished. The coropents
with different frequencies in structure function series are separated
using empirical mode decomposition. Additionally, a chaosletec-
tion model based on the Duffing equation is introduced to dete
mine the useful component and extract the changing featuresf
RF. Experimental results indicate that the proposed methodlogy
can successfully extract the slippage signal effectively ithe case
that multiple radar pulse sequences overlap.

Index Terms: Duffing equation, empirical mode decomposition,
feature extraction, Gaussian noise insertion, structurednction.

I. INTRODUCTION

In a complex and dense signal environment, radar signal s
ing is the core technology of radar signal detection sysfems
technology involves feature extraction of radar signalseadi

tional sorting methods usually depend on feature paraseter

such as time of arrival (TOA), radio frequency (RF), pulsdtivi
(PW), angle of arrival (AOA) and pulse amplitude (PA) [1]]. [2
However, with the rapid development of radar technologg, th
number of emitters increases considerably, resultinggnas

overlapping more severely and the modulation forms of S|§

nals becoming more complicated. Many new radar systems
simultaneously provided with slippage, transition andd@n

agility of different parameters (including RF, PW, and guls
repetition interval). Additionally, the between-classibdaries

of signals described by conventional feature parametegs- ov._.

lap severely. For frequency slippage signals whose frezyuen
changes periodically with time, no traditional five-paraene
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sorting method can realize signal extraction effectiv@lgere-
fore, the radar signal sorting based on five traditional patars
is no longer applicable in a modern electronic battlefield.
Recent methods for extracting feature parameters of réglar s
nals include atom decomposition [3]—[6], fuzzy functioih [8],
relative non-ambiguity phase restoral [9], [10], suppcetv
tor machine (SVM) classification [11]-[13] and differenae a
tocorrelation feature extraction [14]. Atom decompositlin-
early represents the optimal form of received signal usewg s
eral functions in atom decomposition dictionary. For fufzryc-
tion sorting methods, the extracted characteristic veaftarain
ridge slice is constituted by the direction of main ridgecesl
barycenter and radius of inertia. The vector can excelleetl
flects waveform structures of different signals. The apgiass-
ing the relative non-ambiguity phase restoral implemeits-n
ambiguity of signal phase and differential operation. A-fur
ther intra-pulse modulation pattern is recognized on tregstat
the analysis of frequency behavior. In sorting methodsdbase
SVM, SVM is employed as a classifier to automatically distin-
guish different signals and has proven to be capable of acigie
a high correct recognition rate. Difference autocorrelafea-
ture extraction methods implement the correlation prooéss
difference operation of radar emitter signals. The optisegla-

(l)'(r':ltble feature vector used to classify signals is obtainedrae

ing to the envelope characteristics of the autocorreldiioi-

tlon The above methods, however, cannot directly analyee t

pulse sequence intercepted by a radar signal receiver setau

tervals between pulses are not equivalent, which leadseat gr
|ff|culty when extracting a slippage signal. Aiming at rkesog

the dilemma, this work converts the feature extraction ipf-sl

age signal to the problem of extracting a periodic sign#he

ase of low SNR. An approach based on empirical mode decom-

Sosmon (EMD) and chaos detection model is presented to ex-

tract slippage signal in radar full-pulse sequence. Inhiser,

a structure function series with equal intervals can beewvet

first by preprocessing. Next, the obtained structure foncsie-

ries is decomposed to several intrinsic mode functions EMF

by adopting EMD. Then, an attempt is made to apply a chaos

detection model based on the Duffing equation to each IMF. If

the phase track of one IMF has a periodic status, then we can de

termine that the IMF with the most significant periodicityrco

responds to the frequency feature of the slippage signaé Th

slippage signal is finally extracted. Simulation resultbdete

the effectiveness of the approach.

II. PREPROCESSING
A. Gaussian Noise Insertion

For a radar full-pulse sequence received by a radar intercep
tion receiver, the RF and TOA parameters constitute a two-
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dimensional information series. It is cumbersome to diyesnt- process, the structure functisia (k) represents the variance of
alyze such a time series because the distribution of the TOAthe increment ofS; (m). The structure functiorb;(n) of the
this series is uneven, random, and nonstationary. For ¢ais rnoise-inserted random serifs(m) is defined to be
son, we change the original time series into a new one that has
equal time intervals by inserting Gaussian noise.
The specific procedures are as follows: suppasks the se-
rial number of a pulse. The domain bf is [1, k1], whereK;
represents the total number of pulses. The RF and TOA paramhere M = K> — n. nyax, the length of the structure func-
eters of the received radar full pulse sequence are definleg taion seriesS,(n), can be properly chosen as long as it satisfies
functions with respect th;, and denoted to bg(k;) andT' (k1) nmax < Ka. K3 denotes the length of the random seidgém).
respectively. The SNR of original series is very low. Additionally, there
The mean RF of the sequence can be expressed as: exists no impact on the frequency characteristics of thé per
odic signal in a random process after multiple times of dafre
. 1 & tion processing. Therefore, we can further calculate thestre
f= K, Z (k1) (@) function of S3(n) to improve the SNR.
k=1 To validate the effectiveness of the correlation procegsin
The maximum range of (k) acting on[1, K] is defined asi;: volving the structure function, suppose a mixture of a siules
signalz = sin(314¢) and Gaussian white noise. Then we have
Ry= sup |f(i)— f(5)] (2) y = x+noisewith SNR=-10dB, sampling atF's = 104 Hz,
1<i,j<Ky which is shown in Fig. 1. Fig. 2 shows the structure functibn a
ter twice of two correlation processing procedures. Obsligu
the structure function has an excellent denoising effeewthe
Ry, 3 SNR is low and can highlight the periodicity of a useful signa
?) > (3) submerged in noise.

Saln) = == 3 [$1(i +m) — S1(0)P ™)

i=1

and the noise to be inserted follows a Gaussian distribution

where f denotes the expectation of the Gaussian distribution,
andR; denotes the confidence interval. The upper percentile of
the Gaussian distribution & (6 represents the standard devia- ol
tion), i.e. the degree of confidenced8.7%, so the variance of
the Gaussian distribution is given by = (%)2.

To guarantee that the noise-inserted time series is equal-
interval and as short as possible, we let the greatest common
divisor GG be the interval of the noise-inserted series:

15

Amplitude

G = ng[T(kZl) — T(kl — 1)] ,1 <k < Kj. (4)

Hence, the RF of the new time series can be attained:

L L
0.05 0.1 0.15 0.2

Sy (ky) = { flkr) ko =T(k1)/G - .

X , otherwise ) . ) o . .
Fig. 1. Mixture of sinusoidal signal and Gaussian noise.

wherek, < Ky = T'(k1)/G, ko and K, represent the serial
number and total number of the noise-inserted time serges, r

spectively. 3s
B. Structure Function L | Y |
The random process derived above, definedds:) (m = st ] ] ‘\‘ I \‘ I
Iy ] | I Y I || -

ko x G is TOA), has significantly low SNR. Hereby, the structure NI A
function involved in fractal geometry is introduced$e(m) so “
that the correlation processing reduces the noise and eeban sl ] L] [ [
the energy of weak periodic signal in random process [15]-[1 Ut VL] PV

Taking the incremental variance of random procgssn) as [ Vot
a structure functiot$z (h) and employing the structure function osif ||| o \| “
to the theory of fractional Brownian motion (FBM) , we have v

Amplitude

0 005 0.1 0.15 02
Time (s)

Sy(h) = (|S1(z + h) — S1(z)[>) ~ |B[**P) ©)

. . . Fig. 2. Structure function after twice of correlation processing.
where(- - -) denotes the mean of timé&) is the fractal dimen-

sion, andh is the process increment. As a statistic of the random
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lll. FEATURE EXTRACTION new data set. Repeating the procedures above, we have
A. Empirical Mode Decomposition ry =1 — IMF,
The structure functiob(n) is still a nonstationary process rg  =re— IMF3,
after preprocessing. In this method, EMD is adopted so as to : (12)

decompose the structure function into IMF components, whic
contain high-frequency components and low-frequency admp

nents [18]. _ _ _ ~The decomposition stops wheg is monotonous in that it can-
In fact, EMD is a process in which the components with difhot be decomposed further. The last remaining component

ferent fluctuations or trends are separated by turn. Thetatt s regarded as the trend component. Combining (11) and (12),
scale features of different IMF components differ allowat@- g, (n) is expressed as:

lyze the signal particularly.
IMF components have to satisfy the following two conditipns N
in the entire data set, the number of extrema and the number of Sa(n) = Z IMFj(n) +rn(n). (13)
zero crossings must either be equal or differ at most by ane; a j=1
any pomt, the mean value of the gnvelope defined bY Fhe I(,)'Thus, the structure function series that is obtained byrprep
cal maxima and the envelope defined by the local m'n'madgssing the two-dimensional time series comprised of RF and
zero [18]. ) ) TOA is decomposed into an IMF set and remaining component.
In the following, we specify the EMD process of the structure
function seriesS>(n). This process involves the envelopes of IoB. Chaos Detection of Periodic Signal

I maxima and local minim .On Il of the extrem . . .
cal maxima and oca X acﬂ‘g(n_) Once a of the extrema After EMD decompoasition of structure function seriggn),
are known, the cubic spline function connecting all the loca

. we take into account that it is difficult to precisely detemmi
maxima shapes the upper envelope. The lower envelope can be

gained by repeating the same procedure for all the localmani which IMF corresponds to the frequency feature of the stiapa

i signal. Hence, to effectively detect the periodic signad, in-
Define the mean value of the upper and lower envelopes,as : T
. . troduce the chaos detection model of a periodic signal based
Subtractingn, from Sz (n), we derive

the Duffing equation [19], [20].
Sa(n) —my = hy. @8) The original form of the Duffing equation is:

N :TN_l—IMFN.

. . 3 _
If h; does not satisfy two basic conditions of the IMF mentioned &+ki+av+ fa” = f(z,1) (14)

above, it must beiftedrepetitively. Takeh; as a data set, and\yherer > 0 represents the damping ratiay + 323 represents
letrm1, be the mean of the envelope fof. This procedure can he nonlinear restoring force, arfdz, ¢) represents the periodic
be expressed as disturbing force. In general, the periodic disturbing ®is set
hi1 = hy —may. 9 to be f(x,t) = 7cos(wt). ycos(wt) is the built-in signal;y
otes the amplitude of the built-in signal;the frequency of
the built-in signal, is equal to the frequency of the sigmabé
measured, which is usually unknown. Therefore, weflet, ¢)

In order to remove the ride waves and make the data m
symmetrical, we must repeat tséting process until theé:th
equation ofhyx = hy,_1) — m1x Meets two basic conditions
of IMF. Additionally, defineIM F; = hyy, i.e., IMF; is the be 0

first IMF component separated from the structure functioiese To suppress_the_ chgotlc mot|o_n of the Duffing chao_tlc_; oscilla
So(n). tor, a weak periodic disturbance is added to the coefficibat o

We have to limit the stopping condition of tiséting process in (14). Equation (14) becomes

so that IMF is meaningful physically. The stopping conditio
can be defined to be the standard deviatdn of h,(,_,) and

hag: wheren cos(wi t) is the system perturbatiom (< 1) andw,
) \hl(k,l) — hlkf (10) denote the amplitude and frequency of the perturbatioreesp

= 2 tively.

=0 hl(k_l) Inythe case of) = 0, i.e., there is no perturbation, the sys-

When S D is less than the set value, tk#ting process will tem is in the strange attractor state. Once a periodic fEtion
stop. According to [18]5D is set to be 0.25 in this work. is added to the coefficient of the nonlinear cubic terfn the

From thesifting process above, we see that/ F; includes chaotic state is suppressed, and the system transitiomstfre
the component with the smallest scale or shortest periokden thaotic state to the periodic state. Considering the seitgiof
structure function serieS;(n). S2(n) minusIM F; is the re- the signal to be measured, as well as the stability of system,

&+ ki — 2 4 b[1 4+ ncos(wit))z® =0 (15)

SD

maining component; addz® to the nonlinear term and simultaneously take the peri-
odic disturbance factor as its coefficient. Because eachitMF
ry = Sa(n) — IMF. (11) discrete, the mathematical model of the detecting systear-is
pressed as

Supposing that there still exist several long-periodic ponents
in r1, repeat thesifting process for, which is considered as a &+ ki — 2® 4+ [1 4+ adp(n)]z® =0 (16)
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whereadr(n) is the discrete periodic signal to be measured.
Represent the state equations of (16) as:

2900

2800

T =y,
{ y =3 — [1+ adr(n)]z® — ky. 17) 270
2600 - o o} o}
Then, (17) is used to detect each IMF. If, for one of the IMFs,
the chaotic attractor appears in phase plane, we can coti@m t
this IMF corresponds to the slippage feature of slippageadig

RF (MHz)

2500
2400 +

2300

IV. EXPERIMENTS

2200 L

A. Effectiveness Verification and Results Analysis T e o e e

The efficiency and accuracy of the presented approach are
evaluated based on experiments involving a set of radae gels
guences. The sequence is comprised of four radar signdtgsin
set, the RF parameter of radar 1 changes according to sine reg
ulation with a frequency of0 H z; the RF parameters of Radar
2 and Radar 4 are randomly agile, and that of Radar 3 switches 2800
randomly among 10 setting frequency points. The PREF jitter
of the slippage signal is set to be 1%. Parameter informagion
listed in Table 1.

Fig. 3. Original pulse sequence.

2900

2700

2600 ° ® @ ®

RF (MHz)

Table 1. Simulation data of radar full pulse sequence. so0t| || 1] o ? I ol ol ©

Radar Radio frequency Pulse repetition 200r
number MH?2) frequency { 2) 2300 | ?
1 2300 + 50sin(2m x 70t) 990 — 1010
(Sllppage frequency) (PRF J|tter) 200, 50005 5001 50015 5002 50025 5003 50035 5004
2 2550 — 2650 300 — 400 Time ()
3 (Ag(l)lgofreglizgcy) SE)F())RF fggeor) Fig. 4. Noise-inserted pulse sequence.
(Agile frequency) (PRF stagger)
4 2350 — 2550 1000 — 1200
(Agile frequency) (PREF jitter)

The original TOA-RF information sequence is shown in
Fig. 3. Obviously, intervals between adjacent pulses aegjual
and random. It is quite difficult for existing methods to ditlg
analyze such atime series. To simplify the process of tHeser
we insert Gaussian noise into the original TOA-RF informiati
sequence as shown in (5) and derive time se$igsn), which
is shown in Fig. 4. From this figure, it can be seen that not only
the equalization of the pulse intervals is accomplished thei . ‘ ‘
features of the original sequence are not affected. 0 1000 oo 4000 2000

The SNR of the noise-inserted pulSe(m) is quite low and
the useful periodic component is submerged to a great extamd. 5. Structure function Sa(n) after repeating correlation processing
so it is necessary to denoise the new time series. Here, we im-three times.
plement the correlation processing f(m) by calculating its
structure function. Because multiple correlation procgshas
no influence on the frequency characteristic of the periodin- cost-benefit analysis. The structure function sefigg:) after
ponent in the noise-inserted pulse sequence, the comelatd- correlation processing is shown in Fig. 5.
cessing ofS;(m) can be repeated more than once to improve The structure functiot$2(n) in Fig. 5 remains a nonstation-
the denoising effect and highlight the low-energy periaim- ary series, although the SNR rises substanti&llyn) is still a
ponent is highlighted. Taking into account that excessivet mixture of components with different frequencies. Therefo
consumption results from enormous computational burdeas, the structure function series is to be decomposed by EMD, and
choose to repeat correlation processing three times aslhoés the results are shown in Fig. 6. From Fig. 6, we can see that

Amplitude
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the structure functioz(n) is decomposed into four IMFs with
different frequencies and a residue compongnAmong these
five components, the frequency b¥/ F is the highest and that
of IM F, is the lowest. Residue componesgtis the trend term.
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Fig. 6. All IMF components derived by the EMD process of Sa(n).

To determine which IMF is periodic, we import all IMFs de-
rived by EMD into the chaos detection model of a periodic sig- | H

nal (17) in turn. Before chaos detection, the initial systeitial

and the amplitude of the signal to be measured must be set prop 4 | |
erly: Let the initial system and amplitude bg =
a = 1, respectively. The phase track of each IMF is shown in

Fig. 7.
Orbit in phase plane corresponding to IMF1—IMF4
20 T T T T T T |
g of mw o —- N
20 . . . . . L
-08 -0.6 -0.4 -0.2 0 02 04 0.6
x(1)
500 T T
g o - )
x ~500 L L L
- =15 -1 -0.5 0 0.5 1 1.5 2
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Fig. 7. Phase track of each IMF in phase plane.

From Fig. 7, only the trajectory of M F; takes on periodic
status in the phase plane, whereas the remaining three |
have chaotic trajectories. Thus, we conclude fhdtF; is peri-
odic and describes the frequency feature of the slippagebig

To validate the accuracy of the detection results, we ektrac

[0,5]"

and

x10°
15

i

'V\U H
i H \‘
osf | H ‘H I l
0-4%\\‘\\ \H I
oz‘H ‘mm ‘H “‘HH
Il

..“
08 \M‘\ “\U
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L
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L L
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Fig. 8. Time-domain chart corresponding to I M F3.

JOV NP | S

100
Frequency (Hz)

Fig. 9. Frequency spectrum of the signal corresponding to I M F3.

The simulation results validate the effectiveness andracgu
of the presented feature extraction approach. Althougklthe
page signal is almost submerged in the TOA-RF information
sequence completely, this method based on EMD and chaos de-
tection not only succeeds in extracting the slippage sjgnal
calculates the slippage frequency. In addition, it remaififesc-
tive in the case of lost pulses. Inspired by the proposed odeth
we can implement feature extraction with a two-dimensiamal
formation sequence comprised of TOA and one of other feature
parameters.

B. Performance When Pulse Repetition Frequency (PRF)ditte

In a complex electromagnetic environment, the TOA param-
eter of radar pulses is influenced by various sources ofdater

ce. Because the TOA and PRF has the following relationship
it can be concluded that the instability of PRF inevitablyedie

orates the performance of the proposed method.

TOA, =TOA,_1 +1/PRF (18)

IM F5 and transform it into the time-domain. The time-domain

chart is shown in Fig. 8. Then, the spectrumIdfl F3 is ob-

In this section, we examine the performance of the proposed

tained by means of the fast Fourier transform (FFT), which imethod in the case that the PRF jitters by calculating and ana
shown in Fig. 9. Fig. 9 shows that the frequency of the signiglzing the success rates. Assume that the PRF of the freguenc
corresponding td M F3 is 70 Hz. The results are consistentslippage signal jitters from 0% to 20%. The simulation exper

with the setting frequency.

ment given by Section 4.1 is independently repeated 200stime
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for each jitter case. Then, the success rates are calcdatbd|s]
shown Fig. 10.

0.95

09 -

0.85

Success rate
-

08

0.75 \

0.7 . >
0 5 10 15 20

PRF jitter (Hz)

Fig. 10. Success rates in case of varying PRF jitter.

jitter is not greater than 14%, whereas the success ratemngsc
drastically and remains below 0.8 when the PRF jitter is tgrea

than 18%. According to the results, we conclude that the pro-

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

In Fig. 10, the success rate remains above 0.9 when the PRF

15]

posed methods can reach the expected degree in the cadeethta]
PREF jitters within 15%, which is adaptive to general sitoati

V. CONCLUSION

[17]

Fi9)

crease in signal density and rapid augmentation of the numise]
of radars, different radar signals overlap more severely,the
characteristics of intercepted radar emitter signals akeaown.
As a result, the traditional methods work quite inefficignth
the case that the parameters overlap too severely in arcertai
range, even clustering methods are inefficient. CombinM®E

and chaos detection for the first time, this work extracts tt

frequency slippage signal in dense and complex full-puése <

guences. Simultaneously, the slippage frequency of aalipp
periodic signal, which is an important sorting feature leidd
in full-pulse sequences, is extracted. This method can ladso
adapted to analyze the two-dimensional information cauntstil
by other sorting parameters and TOA, not just RF and TOA.

(1]

[2]

(4]
(5]
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