• Title/Summary/Keyword: Gaussian approximation

Search Result 180, Processing Time 0.027 seconds

Quantum Mechanical Calculation of Spectroscopic Constants of ClO and $CIO^+$

  • Hae-Sun Song;Eun-Mo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.476-480
    • /
    • 1993
  • The ab initio calculations were performed on ClO and $ClO^+$ using the configuration interaction and M${\phi}$ller-Plesset methods of several different levels of approximation. Three different basis sets, 66 contracted Gaussian-type orbitals,6-31$G^*$ and 6-311$G^*$, were employed in this calculation. The results of calculation were compared with the experimental values of ClO. The values from the calculation with 66cGTO basis set gave excellent agreement with the experimental values. The spectroscopic constants of $ClO^+$ were also predicted.

A Study on Effective Bandwidth Algorithms for Mass Broadcasting Service with Channel Bonding (채널 결합 기반 대용량 방송서비스를 위한 유효 대역폭 추정 알고리즘에 대한 연구)

  • Yong, Ki-Tak;Shin, Hyun-Chul;Lee, Dong-Yul;You, Woong-Sik;Choi, Dong-Joon;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.47-61
    • /
    • 2012
  • parallel transmitting system with channel bonding method have been proposed to transmit mass content such as UHD(Ultra High Definition) in HFC(Hybrid Fiber Coaxial) networks. However, this system may lead to channel resource problem because the system needs many channels to transmit mass content. In this paper, we analyze three effective bandwidth approximation algorithms to use the bonding channel efficiently. These algorithms are the effective bandwidth of Gaussian approximation method algorithm proposed by Guerin, the effective bandwidth based on statistics of video frames proposed by Lee and the effective bandwidth based on Gaussian traffic proposed by Nagarajan. We also evaluate compatibility of algorithms to the mass broadcasting service. OPNET simulator is used to evaluate the performance of the algorithms. For accuracy of simulation, we make mass source from real HD broadcasting stream.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.

Investigation of AGA Effect on Performance analysis of a Multicode CDMA system equipped with an MPIC (다중경로 간섭제거기법을 적용한 다중코드 CDMA 시스템 성능 분석에서의 부가적 가우시안 근사화에 의한 영향 분석)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.75-81
    • /
    • 2008
  • The authors present a more accurate analysis of the bit error rate (BER) performance for multicode code division multiple access (CDMA) systems equipped with a multipath interference canceler (MPIC) over multipath fading channels. At first, we consider the problem of previous researches. It is that the previous analyses do not match with simulations even in the case without MPIC. This mismatch also causes the difference between the analysis and simulations when an MPIC is applied. Therefore, what is needed is to verify the reason of this mismatch at the initial stage. Numerical results obtained from the proposed analytical method indicate that the performance mismatch between the previous analysis and simulations is caused by not fie Gaussian approximation which is generally used at the performance analysis of CDMA systems but the additional Gaussian approximation (AGA) for multipath interferences. Based on this effect, we propose a more accurate performance analysis not using AGA and its accuracy is verified by simulations. Furthermore, it is confirmed that the proposed analysis presents an analytical lower bound which can be achieved by MPIC.

Performance of Optimization for Short Reference Differential Chaos Shift Keying Scheme (짧은 참조신호를 이용한 차동 카오스 편이 변조의 성능 최적화)

  • Jang, Eun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.453-460
    • /
    • 2019
  • The SR-DCSK(Short Reference Differential Chaos Shift Keying) is a variant of DCSK that improves data transmission speed and energy efficiency without additional complexity. However, even when the reference signal of the optimum length is applied, the BER performance of the SR-DCSK is not better than that of the conventional DCSK. In this paper, we propose a scheme to improve the performance of SR-DCSK by applying two scale factors (scale coefficients) to the reference signal and the information signal, respectively. And the performance of the proposed method is analyzed by BER using Gaussian Approximation. Based on the derived BER expressions, we minimize the BER for a given system parameter to optimize the ratio of the two coefficients. Simulation results confirm that the BER of the proposed method is much improved over the SR-DCSK when we apply the optimal ratio of the two scale factors.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

Population Dose Assessment for Radiation Emergency in Complex Terrain (복잡 지형에서의 주민선량 계산)

  • Yoon, Yea-Chang;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.28-36
    • /
    • 1987
  • Gaussian plume model is used to assess environmental dose for abnormal radioactive release in nuclear facility, but there has a problem to use it for complex terrain. In this report, MATTEW and WIND04 Codes which had been verified were used to calculate wind field in the complex terrain. Under the base of these codes principle, wind fields were obtained from the calculation of the finite difference approximation for advection-diffusion equations which satisfy the mass-conservative law. Particle concentrations and external doses were calculated by using PIC model which approximate the particle to radioactive cloud, and atmospheric diffusion of the particles from the random walk method. The results show that the adjusted wind fields and the distributions of the exposure dose vary with the topography of the complex terrain.

  • PDF

Approximate Probability Density for the Controlled Responses of Randomly Excited Saturated Oscillator (불규칙 가진을 받는 포화 진동계의 응답제어에 관한 확률밀도 추정)

  • 박지훈;김홍진;민경원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.301-309
    • /
    • 2003
  • The non linear control algorithm with actuator saturation for a randomly excited oscillator has been widely explored and has shown promising results, but the probabilistic analysis of the algorithm has been rarely made due to its non-linear nature and the fact that the analytical solution of probability density function (PDF) for controlled responses does not exist. In this paper, a method for the probabilistic analysis on the non linear control algorithm with actuator saturation is proposed based on the equivalent non linear system method. Numerical examples are given to verify the approximation solution of PDF comparing to a statistically obtained PDF using a Gaussian white noise and a Kanai - Tagimi filtered Gaussian white noise.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Adaptive Correlation Noise Model for DC Coefficients in Wyner-Ziv Video Coding

  • Qin, Hao;Song, Bin;Zhao, Yue;Liu, Haihua
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • An adaptive correlation noise model (CNM) construction algorithm is proposed in this paper to increase the efficiency of parity bits for correcting errors of the side information in transform domain Wyner-Ziv (WZ) video coding. The proposed algorithm introduces two techniques to improve the accuracy of the CNM. First, it calculates the mean of direct current (DC) coefficients of the original WZ frame at the encoder and uses it to assist the decoder to calculate the CNM parameters. Second, by considering the statistical property of the transform domain correlation noise and the motion characteristic of the frame, the algorithm adaptively models the DC coefficients of the correlation noise with the Gaussian distribution for the low motion frames and the Laplacian distribution for the high motion frames, respectively. With these techniques, the proposed algorithm is able to make a more accurate approximation to the real distribution of the correlation noise at the expense of a very slight increment to the coding complexity. The simulation results show that the proposed algorithm can improve the average peak signal-to-noise ratio of the decoded WZ frames by 0.5 dB to 1.5 dB.