DOI QR코드

DOI QR Code

Performance of Optimization for Short Reference Differential Chaos Shift Keying Scheme

짧은 참조신호를 이용한 차동 카오스 편이 변조의 성능 최적화

  • Received : 2019.03.26
  • Accepted : 2019.06.15
  • Published : 2019.06.30

Abstract

The SR-DCSK(Short Reference Differential Chaos Shift Keying) is a variant of DCSK that improves data transmission speed and energy efficiency without additional complexity. However, even when the reference signal of the optimum length is applied, the BER performance of the SR-DCSK is not better than that of the conventional DCSK. In this paper, we propose a scheme to improve the performance of SR-DCSK by applying two scale factors (scale coefficients) to the reference signal and the information signal, respectively. And the performance of the proposed method is analyzed by BER using Gaussian Approximation. Based on the derived BER expressions, we minimize the BER for a given system parameter to optimize the ratio of the two coefficients. Simulation results confirm that the BER of the proposed method is much improved over the SR-DCSK when we apply the optimal ratio of the two scale factors.

짧은 참조 신호를 이용한 차동 카오스 편이 변조 (SR-DCSK)는 DCSK의 변형으로, 추가적인 복잡성 없이 데이터 전송 속도를 높이고 에너지 효율성을 향상시킨다. 그러나 최적 길이의 기준 신호를 적용해도 기존 DCSK 대비 SR-DCSK의 BER성능의 장점은 보이지 않는다. 본 논문에서는 기준 신호와 정보를 가진 신호에 각각 두 개의 스케일 계수 (scale coefficient)를 적용하여 SR-DCSK의 성능을 향상시키는 방법을 제안한다. 그리고 제안된 방법의 성능은 가우스 근삿법을 사용하여 BER로 분석한다. 그 후 도출한 BER 표현식을 기반으로, 주어진 시스템 파라미터에 대해 BER을 최소화하여 두 계수의 비율을 최적화한다. 제안된 방법의 BER은 두 스케일 계수의 최적 비율을 적용할 때 SR-DCSK 보다 많은 부분 개선되었다는 것을 시뮬레이션 결과로 확인한다.

Keywords

KCTSAD_2019_v14n3_453_f0001.png 이미지

그림 1. 제안한 SR-DCSK의 송수신기 블록 다이어그램 Fig. 1 Block diagram of proposed SR-DCSK transceiver .

KCTSAD_2019_v14n3_453_f0002.png 이미지

그림 2. AWGN채널에서 ρ에 따른 BER (P=8) Fig. 2 BER according to ρ in AWGN channel (P=8)

KCTSAD_2019_v14n3_453_f0003.png 이미지

그림 3. AWGN 채널에서 R에 따른 BER (β=100) Fig. 3 BER according to R in AWGN channel (β=100)

KCTSAD_2019_v14n3_453_f0004.png 이미지

그림 4. AWGN 채널에서 f 에 따른 BER (β = 100, R = 50) Fig. 4 BER according to f in AWGN channel (β =100, R = 50)

KCTSAD_2019_v14n3_453_f0005.png 이미지

그림 5. 시뮬레이션한 BER 및 분석 BER의 성능비교 Fig. 5 Comparisons of BER performance Simulated BER and analysis BER

KCTSAD_2019_v14n3_453_f0006.png 이미지

그림 6. 개선된 SR-DCSK과 SR-DCSK의 BER 성능 비교 Fig. 6 BER performance comparison between improved SR-DCSK and SR-DCSK

KCTSAD_2019_v14n3_453_f0007.png 이미지

그림 7. Rayleigh 다중 경로 페이딩에 대한 BER 성능 비교(L=3) Fig. 7 Comparisons of BER performance over Rayleigh multipath fading channel(L=3)

References

  1. X. Min, W. Xu, L. Wang, and G. Chen, "Promising performance of an FM-DCSK UWB system under indoor environments," IET Commun., vol. 4, no. 2, Jan. 2010, pp. 125-134. https://doi.org/10.1049/iet-com.2008.0658
  2. A. Al-Talabani, A. Nallanathan, and X. Nguyen, "Enhancing physical layer security of cognitive radio transceiver via chaotic OFDM," IEEE International Conference on Communications (ICC), London, UK, June. 2015, pp. 4805-4810.
  3. Y. Xia, C. K. Tse, and F. C. M. Lau, "Performance of differential chaos-shiftkeying digital communication systems over a multipath fading channel with delay spread," IEEE Trans. Circuits Syst.-II, vol. 51, no. 12, Dec. 2004, pp. 680-684. https://doi.org/10.1109/TCSII.2004.838329
  4. C. C. Chong and S. K. Yong, "UWB direct chaotic communication technology for low-rate WPAN applications," IEEE Trans. Vehicular Technology, vol. 57, no. 3, Mar. 2008, pp. 1527-1536. https://doi.org/10.1109/TVT.2007.907089
  5. Y. Fang, J. Xu, L. Wang, and G. R. Chen, "Performance of MIMO relay DCSK-CD systems over nakagami fading channels," IEEE Trans. Circuits and Syst.-I, vol. 60, no. 3, Mar. 2013, pp. 757-767. https://doi.org/10.1109/TCSI.2012.2215755
  6. G. Kaddoum and N. Tadayon, "Differential chaos shift keying: A robust modulation scheme for power-line communications," IEEE Trans. Circuits Syst.-II, vol. 63, 2016.
  7. W. Xu, L. Wang, and G. Chen, "Performance analysis of the CS-DCSK/BPSK communication system," IEEE Trans. Circuits and Syst., vol. 61, no. 9, Sept. 2014, pp. 2624-2633. https://doi.org/10.1109/TCSI.2014.2312477
  8. F. Escribano, G. Kaddoum, A. Wagemakers, and P. Giard, "Design of a new differential chaos-shift-keying system for continuous mobility," IEEE Trans. Commun., vol. 64, no. 5, May. 2016, pp. 2066-2078. https://doi.org/10.1109/TCOMM.2016.2538236
  9. H. Yang, G. Jiang, and J. Duan, "Phase-separated DCSK: A simple delay-component-free solution for chaotic communications," IEEE Trans. Circuits and Syst.-II, vol. 61, no. 12, Dec. 2014, pp. 967-971. https://doi.org/10.1109/TCSII.2014.2356914
  10. E. Jang, "Design of digital communication systems using DCSK chaotic modulation," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 5, May 2015, pp. 565-570. https://doi.org/10.13067/JKIECS.2015.10.5.565
  11. E. Jang, "Design of FM-QCSK Chaotic Communication System for high-speed communication," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 10, Oct. 2015, pp. 565-570. https://doi.org/10.13067/JKIECS.2015.10.5.565
  12. L. Wang, G. Cai, and G. Chen, "Design and performance analysis of a new multiresolution M-ary differential chaos shift keying communication system," IEEE Trans. Wireless Commun., vol. 14, no. 9, Sept. 2015, pp. 5197-5208. https://doi.org/10.1109/TWC.2015.2434820
  13. G. Kaddoum, E. Soujeri, and Y. Nijsure, "Design of a short reference noncoherent chaos-based communication systems," IEEE. Trans. Commun., vol. 64, no. 2, Jan. 2016, pp. 680-689. https://doi.org/10.1109/TCOMM.2015.2514089