• Title/Summary/Keyword: Gaussian Mixture Component

Search Result 48, Processing Time 0.027 seconds

A Study on Improved MDL Technique for Optimization of Acoustic Model (향상된 MDL 기법에 의한 음향모델의 최적화 연구)

  • Cho, Hoon-Young;Kim, Sang-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • This paper describes optimization methods of acoustic models in HMM-based continuous speech recognition. Most of the conventional speech recognition systems use the same number of Gaussian mixture components for each HMM state. However, since the number of data samples available for each state is different from each other, it is possible to reduce the overall number of model parameters and the computational cost at the decoding step by optimizing the number of Gaussian mixture components. In this study, we introduced the Gaussian mixture weight term at the merging stage of Gaussian components in the minimum description length (MDL) based acoustic modeling optimization. Experimental results showed that the proposed method can obtain better ASR accuracy than the previous optimization method which does not consider the Gaussian mixture weight term.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Noise Reduction Using Gaussian Mixture Model and Morphological Filter (가우스 혼합모델과 형태학적 필터를 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Generally, wavelet coefficients can be classified into two categories: large coefficients with much signal information and small coefficients with little signal component. This statistical characteristic of wavelet coefficient is approximated to Gaussian mixture model and efficiently applied to noise reduction. In this paper, we propose an image denoising method using mixture modeling of wavelet coefficients. Binary mask value is generated by proper threshold which classifies wavelet coefficients into two categories. Information of binary mask value is used to remove image noise. We also develope an enhancement method of mask value using morphological filter, and apply it to image denoising for improvement of the proposed method. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

Comprehensive Performance Analysis and Comparison of various Digital Communication Systems in an Multipath Fading Channel with additive Mixture of Gaussian and Impulsive Noise [Part-1] (가우스성 잡음과 임펄스성 잡음이 혼재하는 다중전파 페이딩 전송로상에서의 제반 디지털 통신 시스템 특성의 종합분석 및 비교에 관한 연구(제 1 부))

  • 김현철;고봉진;공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.263-279
    • /
    • 1989
  • In part-1 of this paper, the error rate equations of digitally modulated signals transmitted though the Gaussian/Impulsive noise channel have been derived. Using the derived equations for the error probabilities of ASK, QAM, CPSK, DPSK, FSK and MSK signals, the error rate performances of digital modulation systems have been evaluated and represented in the figures as the functions of carrier-to-noise power ratio(CNR), impulsive index, and the ration of Gaussian noise power component to impulsive noise power component. The results are shown in graphs to known how much impulsive noise effects on digital signals than Gaussian noise.

  • PDF

Speaker Identification Using PCA Fuzzy Mixture Model (PCA 퍼지 혼합 모델을 이용한 화자 식별)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.

  • PDF

Predicting Unknown Composition of a Mixture Using Independent Component Analysis

  • Lee, Hye-Seon;Park, Hae-Sang;Jun, Chi-Hyuck
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.127-134
    • /
    • 2005
  • A suitable representation for the conceptual simplicity of the data in statistics and signal processing is essential for a subsequent analysis such as prediction, pattern recognition, and spatial analysis. Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.

  • PDF

Efficient Speaker Identification based on Robust VQ-PCA (강인한 VQ-PCA에 기반한 효율적인 화자 식별)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.57-62
    • /
    • 2004
  • In this paper, an efficient speaker identification based on robust vector quantizationprincipal component analysis (VQ-PCA) is proposed to solve the problems from outliers and high dimensionality of training feature vectors in speaker identification, Firstly, the proposed method partitions the data space into several disjoint regions by roust VQ based on M-estimation. Secondly, the robust PCA is obtained from the covariance matrix in each region. Finally, our method obtains the Gaussian Mixture model (GMM) for speaker from the transformed feature vectors with reduced dimension by the robust PCA in each region, Compared to the conventional GMM with diagonal covariance matrix, under the same performance, the proposed method gives faster results with less storage and, moreover, shows robust performance to outliers.

  • PDF

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Driver Verification System Using Biometrical GMM Supervector Kernel (생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2010
  • This paper presents biometrical driver verification system in car experiment through analysis of speech, and face information. We have used Mel-scale Frequency Cesptral Coefficients (MFCCs) for speaker verification using speech information. For face verification, face region is detected by AdaBoost algorithm and dimension-reduced feature vector is extracted by using principal component analysis only from face region. In this paper, we apply the extracted speech- and face feature vectors to an SVM kernel with Gaussian Mixture Models(GMM) supervector. The experimental results of the proposed approach show a clear improvement compared to a simple GMM or SVM approach.