본 연구에서는 차세대 나노소자인 이중게이트(Double gate; DG) MOSFET에서 발생하는 단채널효과 중 하나인 드레인유기장벽감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하였다. 포아송방정식을 풀어 전위분포에 대한 분석학적 해를 구할 때 전하분포함수에 대하여 가우시안 함수를 사용함으로써 보다 실험값에 가깝게 해석하였으며 이때 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 소자 파라미터인 채널의 크기, 도핑강도 등에 대하여 드레인유기장벽감소의 변화를 관찰하고자 한다. 본 연구의 모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으므로 본 연구에서는 이 모델을 이용하여 드레인유기장벽감소에 대하여 분석한 결과 드레인유기장벽감소 현상은 채널의 구조 및 도핑강도에 따라 매우 급격히 변화하는 것을 알 수 있었다.
주성분 분석(PCA)은 데이터의 차원을 줄이면서 최대의 데이터 변이를 보존하는 기법으로 차원 축소나 특징 추출을 위해 널리 사용되고 있다. 하지만 PCA는 잡음에 민감하며 가우스 분포에 대하여만 유효하다는 단점이 있다. 잡음 민감성의 개선을 위해 다양한 방법이 제시되었고 그 중 퍼지 소속도를 이용한 반복적 최적화 기법인 RF-PCA2가 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2는 가우스 분포에만 사용할 수 있는 선형 알고리듬이라는 한계가 있다. 이 논문에서는 RF-PCA2와 커널 주성분 분석(kernel PCA, K-PCA)을 결합하여 가우스 분포 이외의 분포들도 다룰 수 있는 비선형 알고리듬인 improved robust kernel fuzzy PCA (RKF-PCA2)를 제안한다. RKF-PCA2는 RF-PCA2 알고리듬의 잡음 강건성과K-PCA의비선형성을 통해 기존알고리듬에 비해 잡음민감성이 적으며 가우스분포 한계를 효과적으로 극복할 수 있다. 이러한 사실은 실험 결과를 통해 확인할 수 있다.
본 연구에서는 이중게이트 MOSFET의 게이트 산화막 두께의 변화에 따른 문턱전압이하 전류의 변화를 분석하였다. 이를 위하여 이중게이트 MOSFET의 채널 내 전위분포를 구하기 위하여 포아송방정식을 이용하였으며 이때 전하분포함수에 대하여 가우시안 함수를 사용하였다. 전위분포는 경계조건을 이용하여 채널크기에 따른 해석학적인 함수로 구하였다. 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 게이트 산화막 두께 등에 대하여 문턱전압이하 전류 특성의 변화를 관찰하였다. 본 연구의 전위모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으며 본 연구에서는 이 모델을 이용하여 문턱전압이하 전류 특성을 분석하였다. 분석결과, 문턱전압이하 전류는 게이트 산화막 두께 및 가우시안 분포함수의 변수 등에 크게 영향을 받는 것을 관찰할 수 있었다.
본 연구에서는 이중게이트 MOSFET의 채널도핑농도의 변화에 따른 문턱전압이하 전류의 변화를 분석하였다. 이를 위하여 이중게이트 MOSFET의 채널 내 전위분포를 구하기 위하여 포아송방정식을 이용하였으며 이때 전하분포함수에 대하여 가우시안 함수를 사용하였다. 전위분포는 경계조건을 이용하여 채널크기에 따른 해석학적인 함수로 구하였다. 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 채널도핑농도 등에 대하여 문턱전압이하 전류 특성의 변화를 관찰하였다. 본 연구의 전위모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으며 본 연구에서는 이 모델을 이용하여 문턱전압이하 전류 특성을 분석하였다. 분석결과, 문턱전압이하 전류는 채널도핑농도 및 가우시안 분포함수의 변수 등에 크게 영향을 받는 것을 관찰할 수 있었다.
본 연구에서는 이중게이트 MOSFET의 게이트 산화막 두께 변화에 따른 문턱전압이하 전류의 변화를 분석하였다. 이중게이트 MOSFET의 채널 내 전위분포를 구하기 위하여 포아송방정식을 이용하였으며 이때 전하분포함수에 대하여 가우시안 함수를 사용하였다. 전위분포는 경계조건을 이용하여 채널크기에 따른 해석학적인 함수로 구하였다. 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 게이트 산화막 두께 등에 대하여 문턱전압이하 전류 특성의 변화를 관찰하였다. 본 연구의 전위모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으며 본 연구에서는 이 모델을 이용하여 문턱전압이하 전류 특성을 분석하였다. 분석결과, 문턱전압이하 전류는 게이트 산화막 두께 및 가우시안 분포함수의 변수 등에 크게 영향을 받는 것을 관찰할 수 있었다.
연속 어휘 인식 확률 분포의 공유 방법에서는 사용될 모델 파라미터들의 초기 추정치를 생성하기 위한 각 문맥들에 대한 음소 데이터가 반드시 필요하지만 이들 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 가우시안 모델의 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하고, 음소 단위로 데이터를 탐색을 지원하는 형상 형성 시스템을 제안한다. 본 논문의 형상 형성 시스템은 확장 facet 분류를 이용하여 사용자에게 음소 단위의 형상 형성 정보를 제공하므로 가우시안 모델의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.31%, 어휘 독립 인식률은 97.63%의 인식률을 나타내었다.
어휘 인식에서는 인식 학습 시 나타나지 않는 미 출현 트라이 폰이 존재하며, 이들 시스템에서는 모델 파라미터들의 초기 추정치를 생성하지 못하고 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 인하여 가우시안 모델의 정확성을 확보하지 못하게 된다. 이를 개선하기 위하여 확률 분포를 이용한 모델 파라미터의 가우시안 모델 최적화 방법을 제안한다. 확률 분포의 가우시안 모델을 최적화하여 가우시안 모델의 정확성을 제공하고, 음소 단위로 데이터의 탐색을 지원하여 신뢰도가 향상되었다. 제안된 방법의 성능 평가를 위하여 실제 다양한 미등록어가 관측될 수 있는 대상으로 실험을 수행하였으며 본 연구에서 제안한 정규화 신뢰도를 이용한 미등록어 거절 알고리즘이 기존의 방법들에 비하여 평균 1.7%의 성능향상을 나타내었다.
본 연구에서는 이중게이트(Double Gate; DG)MOSFET의 채널내 전위와 전하분포의 관계를 가우스 함수를 이용한 포아송방정식으로부터 유도하고자 한다. 즉, 도핑분포는 가우스 함수를 이용하였으며 변수인 이온주입범위 및 분포편차에 대하여 문턱전압이하 스윙과 산화막 두께의 관계를 관찰하고자 한다. 포아송방정식으로부터 해석학적 전위분포 모델을 구하였으며 이를 이용하여 산화막 두께에 대한 문턱전압이하 스윙값의 변화를 구하였다. 문턱전압이하 스윙은 게이트전압에 대한 드레인전류의 변화를 나타내고 이론적으론 최소값 60 mV/dec을 나타내며 디지털소자응용에 매우 중요한 요소이다. 본 연구의 모델이 타당하다는 것을 입증하기 위하여 포텐셜 분포값을 수치해석학적 값과 비교하였다. 결과적으로 본 연구에서 제시한 포텐셜모델이 수치해석학적 시뮬레이션모델과 매우 잘 일치하였으며 도핑분포에 따라 문턱전압이하 스윙과 산화막두께의 관계를 분석하였다.
본 논문은 노이즈가 비 정규 분포를 따르는 수중 환경에서 비 선형 필터 기법에 따른 Mass-Damper-Spring (MBK) 시스템 위치추정에 관한 연구 내용이다. 최근 위치 추정에 사용되는 필터는 확장 칼만 필터 (EKF: Extended Kalman Filter) 와 파티클 필터(Particle Filter)가 주목 받고 있다. EKF는 가우시안 잡음 (Gaussian Noise) 이 존재하는 비선형 시스템에서 정확도가 높은 알고리즘으로 널리 사용되고 있지만, 수중 환경과 같이 비 가우시안 잡음이 존재하는 경우 사용에 많은 제약이 따른다. 이에 본 논문에서는 상태예측을 기반으로 둔 EKF와 비교하여, 통계적 발생 가능성 인자 (Maximum Likelihood) 에 기반한 분포 재해석 기법을 이용한 개선된 ODPF (One-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 non-Gaussian noise가 존재하는 수중 환경에서 EKF와 제안한 Particle filter를 사용한 위치 추정 결과를 비교 분석하였으며, 계산 용량 및 통계 샘플이 충분한 경우 ODPF가 EKF 대비 정확한 위치 추정 결과를 제공하는 것을 확인하였다.
AWGN(Addictive white gaussian noise)에 의해 영상은 자주 훼손되곤 한다. 최근 이를 복원하기위해 웨이블릿(Wavelet) 영역에서의 베이시안(Bayesian) 추정법이 연구되고 있다. 웨이블릿 변환된 영상 신호의 밀도 함수(pdf)는 표족한 첨두와 긴 꼬리(long-tail)를 갖는 경망이 있다. 이러한 사전 밀도 함수(a priori probability density function)를 상황에 적합하게 추정한다면 좋은 성능의 복원 결과를 얻을 수 있다. 빈번이 제안되는 릴도 함수로 가우시안(Gaussian) 분포 참수와 라플라스(Laplace) 분포 함수가 있다. 이들 각각의 모델은 훌륭히 변환 계수들을 모델링하며 나름대로의 장점을 나타낸다. 본 연구에서는 가우시안 분포와 라플라스(Laplace) 분포의 혼합 분포 모델을 밀도 함수로 제안하여, 이 들의 장점을 종합하였다. 이를 MAP(Maximum a Posteriori) 추정 방법에 적용하여 잡음을 제거 하였다. 그 결과 기존의 알고리즘에 비해 시각적인 면(Visual aspect), 수치적인 면(PSNR), 그리고 연산량(Complexity) 측면에서 망상된 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.