• Title/Summary/Keyword: Gauss-Seidel method

Search Result 77, Processing Time 0.031 seconds

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

Development of Algorithm in Analysis of Single Trait Animal Model for Genetic Evaluation of Hanwoo (단형질 개체모형을 이용한 한우 육종가 추정프로그램 개발)

  • Koo, Yangmo;Kim, Jungil;Song, Chieun;Lee, Kihwan;Shin, Jaeyoung;Jang, Hyungi;Choi, Taejeong;Kim, Sidong;Park, Byoungho;Cho, Kwanghyun;Lee, Seungsoo;Choy, Yunho;Kim, Byeongwoo;Lee, Junggyu;Song, Hoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • Estimate breeding value can be used as single trait animal model was developed directly using the Fortran language program. The program is based on data computed by using the indirect method repeatedly. The program develops a common algorithm and imprves efficiency. Algorithm efficiency was compared between the two programs. Estimated using the solution is easy to farm and brand the service, pedigree data base was associated with the development of an improved system. The existing program that uses the single trait animal model and the comparative analysis of efficiency is weak because the estimation of the solution and the conventional algorithm programmed through regular formulation involve many repetition; therefore, the newly developed algorithm was conducted to improve speed by reducing the repetition. Single trait animal model was used to analyze Gauss-Seidel iteration method, and the aforesaid two algorithms were compared thorough the mixed model equation which is used the most commonly in estimating the current breeding value by applying the procedures such as the preparation of information necessary for modelling, removal of duplicative data, verifying the parent information of based population in the pedigree data, and assigning sequential numbers, etc. The existing conventional algorithm is the method for reading and recording the data by utilizing the successive repetitive sentences, while new algorithm is the method for directly generating the left hand side for estimation based on effect. Two programs were developed to ensure the accurate evaluation. BLUPF90 and MTDFREML were compared using the estimated solution. In relation to the pearson and spearman correlation, the estimated breeding value correlation coefficients were highest among all traits over 99.5%. Depending on the breeding value of the high correlation in Model I and Model II, accurate evaluation can be found. The number of iteration to convergence was 2,568 in Model I and 1,038 in Model II. The speed of solving was 256.008 seconds in Model I and 235.729 seconds in Model II. Model II had a speed of approximately 10% more than Model I. Therefore, it is considered to be much more effective to analyze large data through the improved algorithm than the existing method. If the corresponding program is systemized and utilized for the consulting of farm and industrial services, it would make contribution to the early selection of individual, shorten the generation, and cultivation of superior groups, and help develop the Hanwoo industry further through the improvement of breeding value based enhancement, ultimately paving the way for the country to evolve into an advanced livestock country.

Detailed Flow Analysis of Helicopter Shrouded Tail Rotor in Hover Using an Unstructured Mesh Flow Solver (비정렬격자계를 이용한 헬리콥터 덮개 꼬리 로터의 제자리 비행 유동 해석)

  • Lee, Hui Dong;Gwon, O Jun;Gang, Hui Jeong;Ju, Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • Detailed flow of a shrouded tail rotor in hover is studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. Numerical simulation is made for a single blade attached to the center body and guide by the duct by imposing a periodic boundary condition between adjacent rotor blades. The results show that the performance of an isolated rotor without shroud compares well with experiment. In case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

NUMERICAL INVESTIGATION OF PLUME-INDUCED FLOW SEPARATION FOR A SPACE LAUNCH VEHICLE (우주발사체의 플룸에 따른 유동박리 현상에 대한 수치적 연구)

  • Ahn, S.J.;Hur, N.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • In this paper, the supersonic flows around space launch vehicles have been numerically simulated by using a 3-D RANS flow solver. The focus of the study was made for investigating plume-induced flow separation(PIFS). For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras model was employed for the closure of turbulence. The Gauss-Seidel iteration was used for time integration. To validate the flow solver, calculation was made for the 0.04 scale model of the Saturn-5 launch vehicle at the supersonic flow condition without exhaust plume, and the predicted results were compared with the experimental data. Good agreements were obtained between the present results and the experiment for the surface pressure coefficient and the Mach number distribution inside the boundary layer. Additional calculations were made for the real scale of the Saturn-5 configuration with exhaust plume. The flow characteristics were analyzed, and the PIFS distances were validated by comparing with the flight data. The KSLV-1 is also simulated at the several altitude conditions. In case of the KSLV-1, PIFS was not observed at all conditions, and it is expected that PIFS is affected by the nozzle position.

Approximate Calculation of Order Fill Rate under Purchase Dependence (구매종속성을 고려한 주문충족률의 근사적 계산)

  • Park, Changkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.137-146
    • /
    • 2017
  • For the competitive business environment under purchase dependence, this paper proposes a new approximate calculation of order fill rate which is a probability of satisfying a customer order immediately using the existing inventory. Purchase dependence is different to demand dependence. Purchase dependence treats the purchase behavior of customers, while demand dependence considers demand correlation between items, between regions, or over time. Purchase dependence can be observed in such areas as marketing, manufacturing systems, and distribution systems. Traditional computational methods have a difficulty of the curse of dimensionality for the large cases, when deriving the stationary joint distribution which is utilized to calculate the order fill rate. In order to escape the curse of dimensionality and protect the solution from diverging for the large cases, we develop a greedy iterative search algorithm based on the Gauss-Seidel method. We show that the greedy iterative search algorithm is a dependable algorithm to derive the stationary joint distribution of on-hand inventories in the retailer system by conducting a comparison analysis of a greedy iterative search algorithm with the simulation. In addition, we present some managerial insights such as : (1) The upper bound of order fill rate can be calculated by the one-item pure system, while the lower bound can be provided by the pure system that consists of all items; (2) As the degree of purchase dependence declines while other conditions remain same, it is observed that the difference between the lower and upper bounds reduces, the order fill rate increases, and the order fill rate gets closer to the upper bound.

Vertical Buoyant Jet in Tidal Water -Crossflowing Environment- (흐름 수역(水域)에서 연직상향부력(鉛直上向浮力)?)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 1987
  • A plane buoyant jet discharged vertically upward into a crossflow is analyzed by numerical solution of the governing equations of continuity, momentum and constituent transport. The turbulent transport is modelled by the Prandtl's mixing length theory. In the numerical solution procedure, the governing equations are transformed by stream function and vorticity transport, non-dimensionalyzed by discharge velocity, slot width, and parameters representing flow characteristics, and solved by Gauss-Seidel iteration method with successive underrelaxation. The numerical experiments were performed for the region of established flow of buoyant jet in the range of discharge densimetric Froude number of 4 to 32 and in the range of velocity ratio of 8 to 15, which is the ratio of discharge velocity to crossflow velocity. Variations of velocities and temperatures, flow patterns and vorticity patterns of receiving water due to buoyant jet were investigated. Also investigated are the effects of velocity ratio and discharge densimetric Froude number on the trajectories of buoyant jet. Computed are velocities, temperatures and local densimetric Froude numbers along the trajectory of the buoyant jet. Spreading rate and dispersion ratio were analyzed in terms of discharge densimetric Froude number, local densimetric Froude number and distance from the source along the jet trajectory. It was noted that the similarity law holds in both the profiles of velocity and temperatures across the jet trajectory and the integral type analysis of Gaussian distribution is applicable.

  • PDF