Vertical Buoyant Jet in Tidal Water -Crossflowing Environment-

흐름 수역(水域)에서 연직상향부력(鉛直上向浮力)?

  • 윤태훈 (한양대학교 공과대학 토목공학과) ;
  • 차영기 (단국대학교 이공대 토목공학과) ;
  • 김창완 (한양대학교 대학원)
  • Received : 1986.10.26
  • Published : 1987.03.31

Abstract

A plane buoyant jet discharged vertically upward into a crossflow is analyzed by numerical solution of the governing equations of continuity, momentum and constituent transport. The turbulent transport is modelled by the Prandtl's mixing length theory. In the numerical solution procedure, the governing equations are transformed by stream function and vorticity transport, non-dimensionalyzed by discharge velocity, slot width, and parameters representing flow characteristics, and solved by Gauss-Seidel iteration method with successive underrelaxation. The numerical experiments were performed for the region of established flow of buoyant jet in the range of discharge densimetric Froude number of 4 to 32 and in the range of velocity ratio of 8 to 15, which is the ratio of discharge velocity to crossflow velocity. Variations of velocities and temperatures, flow patterns and vorticity patterns of receiving water due to buoyant jet were investigated. Also investigated are the effects of velocity ratio and discharge densimetric Froude number on the trajectories of buoyant jet. Computed are velocities, temperatures and local densimetric Froude numbers along the trajectory of the buoyant jet. Spreading rate and dispersion ratio were analyzed in terms of discharge densimetric Froude number, local densimetric Froude number and distance from the source along the jet trajectory. It was noted that the similarity law holds in both the profiles of velocity and temperatures across the jet trajectory and the integral type analysis of Gaussian distribution is applicable.

흐름수역(水域)에서 연직상향으로 방류되는 평면부력(平面浮力)?의 거동이 연속방정식(連續方程式), 운동량방정식(運動量方程式) 및 추적물수송식(追跡物輸送式)의 기본방정식을 수치적(數値的)으로 풀음으로서 해석(解析)된다. 난류확산(亂流擴散)에는 Prandtl의 혼합거리이론(混合距離理論)을 도입한 난류수송모형(亂流輸送模型)이 이용된다. 수치해과정(數値解過程)은 기본방정식을 유함수(流凾數)(stream function)식(式)과 골도수송(滑度輸送)(vorticity transport)식을(式) 이용하여 변환(變換)한 후, ?방류속도(放流速度), ?방류구폭(放流口幅) 등(等)으로 표현되는 변수(變數)와 흐름을 지배(支配)하는 무차원매개변수(無次元媒介變數)를 도입하여 무차원화(無次元化)하고 successive under-relaxation을 이용하여 Gauss-Seidal 반복법(反復法)으로 해를(解) 구(求)하는 것이다. 수치실험(數値實驗)은 방류(放流)Froude수(數)가 4~32, 방류속도(放流速度)와 가로흐름속도와의 비로(比) 정의되는 속도비가 8~15 의 범위의 흐름영역(領域)에서 수행되었다. 부력(浮力)?으로 인한 주변(周邊)흐름수역(水域)의 속도변화(速度變化), 온도상승(溫度上昇)범위, 흐름상태 및 골도(滑度)가 조사되었으며, ?의 경로에 대한 속도비와 방류밀도Froude 수의 영향이 또한 조사되었다. ?중심선의 속도, 온도변화, 국부밀도(局部密度)Froude 수(數)의 변화가 계산되며 퍼짐율(spreading rate)과 확산비(擴散比)(dispersion ratio)가 방류밀도(放流密度)Froude 수, 국부밀도(局部密度)Froude 수(數) 및 속도비(速度比)의 항(項)으로 해석되었다. 또한 속도와 온도분포를 상사(相似)(similarity)로 나타낼 수 있음이 밝혀졌으며, Gaussian 분포(分布)를 이용한 적분형해석(積分型解析)(integral type analysis)이 가능한 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 한국과학재단