• Title/Summary/Keyword: Gauss model

Search Result 197, Processing Time 0.032 seconds

Bivariate odd-log-logistic-Weibull regression model for oral health-related quality of life

  • Cruz, Jose N. da;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Mialhe, Fabio L.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.271-290
    • /
    • 2017
  • We study a bivariate response regression model with arbitrary marginal distributions and joint distributions using Frank and Clayton's families of copulas. The proposed model is used for fitting dependent bivariate data with explanatory variables using the log-odd log-logistic Weibull distribution. We consider likelihood inferential procedures based on constrained parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the bivariate odd-log-logistic-Weibull regression model. Sensitivity analysis methods (such as local and total influence) are investigated under three perturbation schemes. The methodology is illustrated in a study to assess changes on schoolchildren's oral health-related quality of life (OHRQoL) in a follow-up exam after three years and to evaluate the impact of caries incidence on the OHRQoL of adolescents.

Structural Analysis of Thin-Walled, Multi-Celled Composite Blades with Elliptic Cross-Sections (다중세포로 구성된 박벽 타원형 단면 복합재료 블레이드의 구조해석)

  • 박일주;정성남
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In this study, a refined beam analysis model has been developed for multi-celled composite blades with elliptic cross-sections. Reissner's semi-complimentary energy functional is introduced to describe the beam theory and also to deal with the mixed-nature of the formulation. The wail of elliptic sections is discretized into finite number of elements along the contour line and Gauss integration is applied to obtain the section properties. For each cell of the section, a total of four continuity conditions are used to impose proper constraints for the section. The theory is applied to single- and double-celled composite blades with elliptic cross-sections and is validated with detailed finite element analysis results.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF

A Finite Difference Model for Tsunami Propagation (지진해일 전파 모의를 위한 유한차분모형)

  • Ahn, Seong-Ho;Ha, Tae-Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.107.2-107.2
    • /
    • 2010
  • 본 연구에서는 지진해일의 전파 과정을 모의함에 있어 선형 천수방정식의 수치분산을 이용하는 기법이 아닌 선형 Boussinesq 방정식을 직접 차분하는 유한차분기법을 제안하였다. 기법의 정확성을 검증하기 위하여 Gauss 분포의 초기 자유수면변위를 갖는 문제에 착용하여 선형 Boussinesq 방정식의 해석해와 비교하였다. 그 결과 기존의 선형 천수방정식을 차분화한 수치모형에 비하여 정확한 결과를 제공하였고 분산보정기법을 이용한 수치모형과 동일한 정확도를 보였으나 본 수치모형을 이용했을 때 계산 효율이 개선되었다.

  • PDF

QR DECOMPOSITION IN NONLINEAR EXPERIMENTAL DESIGN

  • Oh, Im-Geol
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • The D-optimal design criterion for precise parameter estimation in nonlinear regression analysis is called the determinant criterion because the determinant of a matrix is to be maximized. In this thesis, we derive the gradient and the Hessian of the determinant criterion, and apply a QR decomposition for their efficient computations. We also propose an approximate form of the Hessian matrix which can be calculated from the first derivative of a model function with respect to the design variables. These equations can be used in a Gauss-Newton type iteration procedure.

  • PDF

ESTIMATION OF NET GROUND WATER RECHARGE IN LARGE AQUIFER SYSTEMS BY GENETIC ALGORITHM: A CASE STUDY

  • K. Lakshmi Prasad;A. K. Rastogi
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.161-169
    • /
    • 2001
  • Present study deals with the development of a numerical model for the estimation of net annual recharge by coupling the Galerkin's finite element flow simulationl model with the Gauss-Newton-Marquardt optimization technique. The developed coupled numerical model is applied for estimating net annual recharge for Mahi Right Bank Canal (MRBC) project the norms of Groundwater Resources Estimation committee (1984, 1997) and Indian Agricultural research Institute(1983). It is observed that the estimated net recharge by inverse modeling is closer to the net recharge estimated using the water balance approach. Further it is observed that the computed head distribution from the estimated recharge agree closely with the observed head distribution. The study concludes that the developed model for inverse modeling can be successfully applied to large groundwater system involving regional aquifers where reliable recharge estimation always requires considerable time and financial resources.

  • PDF

A new extended Birnbaum-Saunders model with cure fraction: classical and Bayesian approach

  • Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Ramires, Thiago G.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.397-419
    • /
    • 2017
  • A four-parameter extended fatigue lifetime model called the odd Birnbaum-Saunders geometric distribution is proposed. This model extends the odd Birnbaum-Saunders and Birnbaum-Saunders distributions. We derive some properties of the new distribution that include expressions for the ordinary moments and generating and quantile functions. The method of maximum likelihood and a Bayesian approach are adopted to estimate the model parameters; in addition, various simulations are performed for different parameter settings and sample sizes. We propose two new models with a cure rate called the odd Birnbaum-Saunders mixture and odd Birnbaum-Saunders geometric models by assuming that the number of competing causes for the event of interest has a geometric distribution. The applicability of the new models are illustrated by means of ethylene data and melanoma data with cure fraction.

Simulation on Surface Tracking Pattern using the Dielectric Breakdown Model

  • Kim, Jun-Won;Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.391-396
    • /
    • 2011
  • The tracking pattern formed on the dielectric surface due to a surface electrical discharge exhibits fractal structure. In order to quantitatively investigate the fractal characteristics of the surface tracking pattern, the dielectric breakdown model has been employed to numerically generate the surface tracking pattern. In dielectric breakdown model, the pattern growth is determined stochastically by a probability function depending on the local electric potential difference. For the computation of the electric potential for all points of the lattice, a two-dimensional discrete Laplace equation is solved by mean of the successive over-relaxation method combined to the Gauss-Seidel method. The box counting method has been used to calculate the fractal dimensions of the simulated patterns with various exponent $\eta$ and breakdown voltage $\phi_b$. As a result of the simulation, it is found that the fractal nature of the surface tracking pattern depends strongly on $\eta$ and $\phi_b$.

A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver (수신기의 기울기 및 방위를 고려한 가시광 통신기반 3차원 실내 위치인식에 대한 연구)

  • Kim, Won-Yeol;Zin, Hyeon-Cheol;Kim, Jong-Chan;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.647-654
    • /
    • 2016
  • Indoor localization based on visible-light communication using the received signal strength intensity (RSSI) has been widely studied because of its high accuracy compared with other wireless localization methods. However, because the RSSI can vary according to the inclination and azimuth of the receiver, a large error can occur, even at the same position. In this paper, we propose a visible-light communication-based 3-D indoor positioning algorithm using the Gauss-Newton technique in order to reduce the errors caused by the change in the inclination of the receiver. The proposed system reduces the amount of computations by selecting the initial position of the receiver through the linear least-squares method (LSM), which is applied to the RSSIs, and improves the position accuracy by applying the Gauss-Newton technique to the 3-D nonlinear model that contains the RSSIs acquired by the changes in the azimuth and inclination of the receiver. In order to verify the validity of the proposed algorithm in an indoor space with dimensions of $6{\times}6{\times}3m$ where 16 LED lights are installed, we compare and analyze the errors of the conventional linear LSM-based trilateration technique and the proposed algorithm according to the changes in the inclination and azimuth of the receiver. The experimental results show that the location accuracy of the proposed algorithm is improved by 82.5% compared to the conventional LSM-based trilateration technique.