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Abstract
We study a bivariate response regression model with arbitrary marginal distributions and joint distributions

using Frank and Clayton’s families of copulas. The proposed model is used for fitting dependent bivariate data
with explanatory variables using the log-odd log-logistic Weibull distribution. We consider likelihood inferential
procedures based on constrained parameters. For different parameter settings and sample sizes, various simula-
tion studies are performed and compared to the performance of the bivariate odd-log-logistic-Weibull regression
model. Sensitivity analysis methods (such as local and total influence) are investigated under three perturbation
schemes. The methodology is illustrated in a study to assess changes on schoolchildren’s oral health-related
quality of life (OHRQoL) in a follow-up exam after three years and to evaluate the impact of caries incidence on
the OHRQoL of adolescents.
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1. Introduction

In statistical analysis, bivariate longitudinal data may represent the occurrence of successive events
within the same individual. There is a probably dependence between these events and its investigation
may be the main interest in a medical trial. Individual models for each event are based on indepen-
dence assumptions and do not allow for inferences in a possible association. The use of bivariate
models seem more adequate and this approach has being used under different approaches and can be
found in Barriga et al. (2010), Chatterjee and Shih (2001), Fachini et al. (2014), and Núñez (2005).
Besides the use of the classical multivariate parametric distributions, copulas can also be used to join
marginal models into multivariate models. Flexibility is provided by the copulas on the marginal se-
lection results in uncountable distributions with distinct properties. In this paper, Frank and Clayton’s
families of copulas are used to construct linear location-scale marginal models including covariates
in the modeling of survival data. For marginal distributions, we consider the log-odd-log-logistic-
Weibull (LOLLW) distribution, which is a recent generalization of the Weibull distribution (da Cruz
et al., 2016).
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The inferential part of the work is conducted using the maximum likelihood theory and the asymp-
totic properties of the estimators. Influence diagnostics represents is an important step in the analysis
of a dataset since they provide an indication of lack-of-fit model or of influential observations. How-
ever, there are no applications of influence diagnostic procedures to the bivariate regression model.
Cook (1986) introduced a diagnostic approach called local influence to assess the effects of small
perturbations in the model and/or data on the parameter estimates. Several authors have applied the
local influence method in more general regression models than the normal regression model. Some
others have also explored the assessment of local influence in survival analysis models. For instance,
Pettitt and Bin Daud (1989) investigated local influence in proportional hazard regression models,
Escobar and Meeker (1992) adapted local influence methods to regression analysis under censoring,
Silva et al. (2010) considered the problem of assessing local influence in log-Weibull (LW) extended
regression model, Hashimoto et al. (2013) investigated global and local influence in log-generalized
gamma regression model for interval-censored data and Ortega et al. (2013) applied local influence
in the log-beta Weibull regression model with application to predict the recurrence of prostate can-
cer. Recently, Ortega et al. (2015) adapted local influence methods to a power series beta Weibull
regression model to predict breast carcinoma, Hashimoto et al. (2015) studied local influence in a
long-term survival model with interval-censored data and Ortega et al. (2017) applied local influence
in regression models generated by gamma random variables. We propose a similar method to detect
influential subjects by considering the local influence approach for the bivariate LOLLW regression
model.

The paper is organized as follows. In Section 2, we discuss bivariate response models using Frank
and Clayton’s families and the LOLLW distribution. In Section 3, we propose the Frank-LOLLW and
Clayton-LOLLW bivariate regression models and the inference strategy based on maximum likelihood
estimates (MLEs) and present a simulation study. In Section 4, we study some diagnostic measures
by considering case deletion and the normal curvatures of local influence, and derive the likelihood
function under different perturbation schemes for the bivariate response regression models. In Section
5, the proposed methods are applied to a real dataset. Section 6 presents the concluding remarks.

2. Bivariate response models using Frank-LOLLW and Clayton-LOLLW copulas

We consider the models introduced by He and Lawless (2005) that have bivariate response variables
with joint distribution given by

F(y1, y2) = Cλ

(
y1 − µ1

σ1
,

y2 − µ2
σ2

)
, (2.1)

where C is a copula function on R2, λ is the association parameter and the marginal distributions of
Y1 and Y2 have the location-scale form

Yk = µk + zk, (2.2)

where µ1 ∈ R and µ2 ∈ R are location parameters, σ1 > 0 and σ2 > 0 are the scale parameters and z1
and z2 are the model errors.

Copulas are functions that provide means to create multivariate distribution functions with differ-
ent dependence structures based on arbitrary marginal functions. Let Yk be a random variable with a
continuous marginal distribution Fk for k = 1, 2. The joint distribution of (Y1,Y2) is given by

F(y1, y2) = Cλ
{
F1(y1), F2(y2)

}
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conditioned on Fk(yk) ∼ U(0, 1), ∀k. The joint distribution Cλ describes the dependence of the random
variables Y1 and Y2 through the association parameter λ.

Various copula functions could have been used in this study. However, the most often cited are the
Frank (1979) and Clayton (1978) copulas for k = 2. Of course many other copulas exist and details
can be found in other texts such as Nelsen (2006). The expressions for these selected copulas are
presented with some limit properties used to create bivariate response regression models. This class
of copula is widely used and has many attractive properties. For more details, see Genest (1987) and
Nelsen (2006).

• Frank family

The joint distribution function for the Frank family is given by

Cλ(y1, y2) = −1
λ

log
{

1 +
{
exp

[−λ F1(y1)
] − 1

} {
exp

[−λ F2(y2)
] − 1

}
exp(−λ) − 1

}
, (2.3)

where λ ∈ R\{0}. For λ→ 0, we obtain C0(y1, y2) = F1(y1)F2(y2) with arbitrary marginal functions
F1(y1) and F2(y2). For λ→ −∞, we obtain C−∞(y1, y2) = max(F1(y1)+F2(y2)−1, 0) and, similarly,
for λ→ ∞, we obtain C∞(y1, y2) = min(F1(y1), F2(y2));

• Clayton family

The joint distribution function for the Clayton family is given by

Cλ(y1, y2) =
{
F1(y1)−λ + F2(y2)−λ − 1

}− 1
λ , (2.4)

where λ ∈ [−1,+∞) and λ , 0. For λ → 0, we obtain C0(y1, y2) = F1(y1)F2(y2). For λ = 1, we
have C1(y1, y2) = max(F1(y1) + F2(y2) − 1, 0) and, similarly, for λ → ∞, we obtain C∞(y1, y2) =
min(F1(y1), F2(y2)).

As can be seen in equations (2.3) and (2.4), we have to define the marginal distributions F1(y1)
and F2(y2). In this paper, we adopt the LOLLW distribution described by Da Cruz et al. (2016).

In statistics, the Weibull and extreme value (LW) distributions are the most popular models for
applications to real data. When the number of observations is large, they can be adopted as approxi-
mate distributions for other models. The probability density function (pdf) and cumulative distribution
function (cdf) of the LW (for y ∈ R) model are given by

g(y; µ, σ) =
1
σ

exp
[(y − µ

σ

)
− exp

(y − µ
σ

)]
and G(y; µ, σ) = 1 − exp

[
− exp

(y − µ
σ

)]
, (2.5)

where µ ∈ R is a location parameter and σ > 0 is a scale parameter.
The cdf of the LOLLW distribution with an additional shape parameter α > 0 is defined by

F(y; µ, σ, α) =
∫ G(y;µ,σ)

Ḡ(y;µ,σ)

0

α yα−1

(1 + yα)2 dy =
G(y; µ, σ)α

G(y; µ, σ)α + Ḡ(y; µ, σ)α
, (2.6)

where Ḡ(y; µ, σ) = 1 −G(y; µ, σ).
The LW cdf G(y; µ, σ) is clearly a special case of (2.6) when α = 1. We note that there is no

complicated function in equation (2.6) in contrast with the beta generalized family (Eugene et al.,
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2002), which includes two extra parameters and the incomplete beta function. The LOLLW density
is given by

f (y; µ, σ, α) =
α g(y; µ, σ) {G(y; µ, σ)[1 −G(y; µ, σ)]}α−1{

G(y; µ, σ)α +
[
1 −G(y; µ, σ)

]α}2 . (2.7)

We can write by omitting the parameters of the cdf

α =
log

[
F(y)/F̄(y)

]
log

[
G(y)/Ḡ(y)

] and Ḡ(y) = 1 −G(y).

Thus, the parameter α represents the quotient of the log odds ratio for the generated and baseline dis-
tributions. The LOLL-G family has received increased attention over the last few years, for example,
Cordeiro et al. (2017a) considered odd log-logistic generalized half-normal lifetime distribution, Da
Silva Braga et al. (2016) proposed odd log-logistic normal distribution, Ortega et al. (2016) devel-
oped the odd Birnbaum-Saunders regression model and recently Cordeiro et al. (2017b) presented the
generalized odd log-logistic family of distributions.

The cdf and pdf of the LOLLW distribution can be expressed as

F(y; µ, σ, α) =

{
1 − exp

[
− exp

(
y−µ
σ

)]}α{
1 − exp

[
− exp

(
y−µ
σ

)]}α
+

{
exp

[
− exp

(
y−µ
σ

)]}α (2.8)

and

f (y; µ, σ, α) =
α exp

(
y−µ
σ

) {
exp

[
− exp

(
y−µ
σ

)]}α {
1 − exp

[
− exp

(
y−µ
σ

)]}α−1

σ
{{

1 − exp
[
− exp

(
y−µ
σ

)]}α
+

{
exp

[
− exp

(
y−µ
σ

)]}α}2 , (2.9)

respectively. Note that α > 0 is a shape parameter. Henceforth, a random variable with density
function (2.9) is denoted by Y ∼ LOLLW(α, µ, σ). For σ = 1, we obtain the log-odd log-logistic
exponential (LOLLE) distribution. Further, the LOLLE distribution with α = 1 reduces to the LW
distribution.

The quantile function (qf) is widespread use in general statistics. Equation (2.6) has tractable
properties specially for simulations, since its qf has a simple form

y = QZ(v) = QLW

 v
1
α

[1 − v]
1
α + v

1
α

 , (2.10)

where z = QLW (v) = µ+σ log[− log(1−v)] is the LW qf derived by inverting (2.5), i.e., G(y; µ, σ) = v.
If the marginal distributions of the model errors in (2.2) follow the LOLLW distribution and subs-

tituting (2.8) and (2.9) in equations (2.3) and (2.4), the joint cdfs are given by:

• Frank-LOLLW joint distribution function

FF(y1, y2) = −1
λ

log

1 +

{
exp

[
−λ(1−u1)α1

(1−u1)α1+uα1
1

]
− 1

} {
exp

[
−λ(1−u2)α2

(1−u2)α1+uα2
2

]
− 1

}
exp(−λ) − 1

 . (2.11)
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(a) λ = 0.01, α1 = 0.5, α2 = 0.5, µ1 = 0, µ2 = 0,
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(b) λ = 5, α1 = 1.5, α2 = 1.3, µ1 = 0, µ2 = 0,
σ1 = 2, σ2 = 2

Figure 1: Probability density function of Frank’s copula.

• Clayton-LOLLW joint distribution function

FC(y1, y2) =


[

(1 − u1)α1

(1 − u1)α1 + uα1
1

]−λ
+

[
(1 − u2)α2

(1 − u2)α2 + uα2
2

]−λ
− 1


− 1
λ

. (2.12)

The joint pdfs are given by:

• Frank-LOLLW joint density function

fF (y1, y2) =
α1 α2 exp (z1 + z2) λ uα1

1 uα2
2

[−1 + exp (λ)
]
exp

{
λ
[
1 + q1 + q2

]}{
exp (λ) − exp

[
λ (1 + q1)

]
+ exp

[
λ (q1 + q2)

] − exp
[
λ (1 + q2)

]}2

× (1 − u1)α1−1 (1 − u2)α2−1

σ1 σ2

[
(1 − u1)α1 + uα1

1

]2 [
(1 − u2)α2 + uα2

2

]2 ; (2.13)

• Clayton-LOLLW joint density function

fC (y1, y2) =
α1α2 exp (z1 + z2) uα1

1 uα2
2 (1 − u1)α1 (1 − u2)α2 (1 + λ) (q1 q2)−(1+λ)

σ1 σ2

[
(1 − u1)α1 + uα1

1

]2 [
(1 − u2)α2 + uα2

2

]2 [
q−λ1 + q−λ2 − 1

](2+ 1
λ )
, (2.14)

where

qk =
(1 − uk)αk

(1 − uk)αk + uαk
k

, uk = exp
[− exp(zk)

]
, zk =

yk − µk

σk
, for k = 1, 2.

Equations (2.13) and (2.14) are referred to as the Frank-LOLLW and Clayton-LOLLW bivariate
models, respectively. The Frank-LOLLW and Clayton-LOLLW models contain as special cases se-
veral well-known distributions. For example, they simplify to the Frank-log-Weibull (Frank-LW)
and Clayton-log-Weibull (Clayton-LW) bivariate models when α1 = α2 = 1. If σ1 = σ2 = 1,
they reduce to the Frank-log odd log-logistic exponential (Frank-LOLLE) and Clayton-log odd log-
logistic exponential (Clayton-LOLLE) bivariate models. If α1 = α2 = 1, in addition to σ1 = σ2 = 1,
the Frank-LOLLW and Clayton-LOLLW models reduce to the Frank-log-exponential (Frank-LE) and
Clayton-log-exponential (Clayton-LE) bivariate models. Plots of the pdf of the Frank’s copula are
displayed in Figure 1 and plots of the pdf of the Clayton’s copula are displayed in Figure 2.
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Figure 2: Probability density function of Clayton’s copula.

3. Regression model and inference strategies

Let Y1 and Y2 be two random variables related to a bivariate response of an individual and consider
that there is a linear relation between the variables Yk (k = 1, 2) and a vector of explanatory variables
xk = (x1k, . . . , xpk)T . A log-linear regression model can be defined by

Yk = xT
k βk + σkzk, (3.1)

where β1 and β2 are the regression coefficients associated with the vectors of explanatory variables
x1 and x2 with dimension p, σ1 > 0 and σ2 > 0 are the scale parameters and z1 and z2 are the model
errors with joint distribution given by equations (2.13) and (2.14) and independent of x1 and x2. If z1
and z2 are independent, the model given in (2.2) is reduced to a traditional location-scale regression
model.

Consider a sample (y1k, x1k), . . . ,(ynk, xnk) (for k = 1, 2) of n independent observations, the model
given in (3.1) and the joint pdfs given in equations (2.13) and (2.14). The total log-likelihood function
for the parameter ψ = (λ, θT

1 , θ
T
2 )T , where θk = (βT

k , σk, αk)T and βT
k = (β1k, . . . , βpk) (for k = 1, 2), is

given by:

• Frank-LOLLW model

l(ψ) = n log
{
λα1 α2

[
exp(λ) − 1

]
σ1 σ2

}
+

n∑
i=1

(zi1 + zi2) + α1

n∑
i=1

log(ui1) + α2

n∑
i=1

log(ui2)

+ λ

n∑
i=1

(1 + qi1 + qi2) + (α1 − 1)
n∑

i=1

log(1 − ui1) + (α2 − 1)
n∑

i=1

log(1 − ui2)

− 2
n∑

i=1

log
{
exp(λ) − exp

[
λ(1 + qi1)

]
+ exp

[
λ(qi1 + qi2)

] − exp
[
λ(1 + qi2)

]}
− 2

n∑
i=1

log
[
(1 − ui1)α1 + uα1

i1

]
− 2

n∑
i=1

log
[
(1 − ui2)α2 + uα2

i2

]
; (3.2)
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• Clayton-LOLLW model

l(ψ) = n log
[
(1 + λ)α1 α2

σ1 σ2

]
+

n∑
i=1

(zi1 + zi2) + α1

n∑
i=1

log(ui1) + α2

n∑
i=1

log(u2i)

+ α1

n∑
i=1

log(1 − ui1) + α2

n∑
i=1

log(1 − ui2) − (1 + λ)
n∑

i=1

log(qi1qi2)

− 2
n∑

i=1

log
[
(1 − ui1)α1 + uα1

i1

]
− 2

n∑
i=1

log
[
(1 − u2i)α2 + uα2

2i

]
−

(
2 +

1
λ

) n∑
i=1

log
[
qλ1i + qλ2i − 1

]
, (3.3)

where

qik =
(1 − uik)αk

(1 − uik)αk + uαk
ik

, uik = exp[− exp(zik)], zik =
yik − xT

ikβk

σk
, i = 1, . . . , n, k = 1, 2.

The MLEs of the parameters in ψ can be obtained by maximizing the functions (3.2) and (3.3).
The MLEs of the regression coefficients and unknown parameters are the solutions of the nonlinear
equations of the score vectors Uλ = 0, Uθ1

= 0 and Uθ2
= 0. We adopt iterative methods to determine

the estimates. The maxBFGS routine in the matrix programming Ox language (Doornik, 2007) has
been used for maximizing the log-likelihood function ℓ(ψ). Initial values for βk, σk and λ are taken
from the fit of the Frank-LW and Clayton-LW bivariate regression models with α1 = α2 = 1.

For interval estimation and hypothesis tests on the model parameters, we require the (2p + 5) ×
(2p + 5) observed (L̈(ψ)) and expected (I(ψ)) information matrices evaluated numerically. Under
general regularity conditions, we can construct approximate confidence intervals for the parameters
based on the multivariate normal N2p+5(0, I(ψ̂)−1) distribution, where ψ̂ is the MLE of ψ.

We can evaluate the maximum values of the unrestricted and restricted log-likelihoods to ob-
tain likelihood ratio (LR) statistics for testing some sub-models of the Frank-LOLLW and Clayton-
LOLLW models. For example, the test of H0 : α1 = α2 = 1 versus H : H0 is not true is equivalent
to compare the Frank-LOLLW (or Clayton-LOLLW) and Frank-LW (or Clayton-LW) and the LR
statistic reduces to

w = 2
[
l
(
λ̂, β̂1, β̂2, σ̂1, σ̂2, α̂1, α̂2

)
− l

(
λ̃, β̃1, β̃2, σ̃1, σ̃2, 1, 1

)]
,

where λ̂, β̂1, β̂2, σ̂1, σ̂2, α̂1, and α̂2 are the MLEs under H and λ̃, β̃1, β̃2, σ̃1, and σ̃2 are the estimates
under H0.

3.1. Simulation study

We perform a Monte Carlo simulation study to assess the finite sample behavior of the MLEs of the
parameters in ψ. The results are obtained from 1,000 Monte Carlo simulations done using the optim
function in the R software. In each replication, a random sample of size n is drawn from the Frank-
LOLLW regression model and the parameters are estimated by maximum likelihood. The samples
denoted by (y1k, x1k), . . . , (ynk, xnk), for k = 1, 2, where the covariates xik are generated from a uniform
distribution in the range (0, 1). The artificial data are generated according to the following steps. First,
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Table 1: Mean estimates and MSEs of the MLEs of the parameters in the Frank-LOLLW regression model

Parameter N = 200 N = 300 N = 400 N = 600
Mean MSE Mean MSE Mean MSE Mean MSE

α1 0.4951 0.0053 0.4956 0.0036 0.4968 0.0028 0.4975 0.0019
σ1 0.9821 0.0140 0.9868 0.0097 0.9920 0.0071 0.9910 0.0048
β01 4.0123 0.0390 4.0029 0.0261 4.0056 0.0174 4.0092 0.0119
β11 −1.0075 0.0925 −0.9932 0.0571 −1.0055 0.0430 −1.0047 0.0275
α2 0.9935 0.0378 0.9939 0.0240 1.0015 0.0183 0.9984 0.0113
σ2 0.4928 0.0066 0.4937 0.0043 0.4977 0.0033 0.4976 0.0021
β02 3.4983 0.0049 3.5012 0.0032 3.5013 0.0023 3.4990 0.0016
β12 −0.4966 0.0135 −0.5013 0.0089 −0.4998 0.0059 −0.4971 0.0045
λ 3.0281 0.2230 3.0245 0.1459 3.0276 0.1196 2.9977 0.0781

MSE = mean square error; MLE = maximum likelihood estimate.

we generate yi1 = µ1i+σ1 log[− log(1−A1i)],where µ1i = β01+β11x1i, A1i = u1/α1
1i /[u1/α1

1i +(1−u1i)1/α1 ]
and ui1 ∼ U(0, 1).

Next, yi2 is generated using a random variable wi ∼ U(0, 1) to obtain u2i = −(1/λ) log[1+wi(e−λ−
1)/(e−λu1i −wi(e−λu1i − 1))], considering yi2 = µ2i +σ2 log[− log(1−A2i)], where µ2i = β02 +β12x2i and
A2i = u1/α2

2i /[u1/α2
2i + (1 − u2i)1/α2 ].

The simulation study is performed for n = 200, 300, 400, and 600. We consider the following
values for the true parameters of the model α1 = 0.5, σ1 = 1.0, β01 = 4.0, β11 = −1.0, α2 = 1.0,
σ2 = 0.5, β02 = 3.5, β12 = −0.5, and λ = 3.0.

Table 1 displays the averages of the MLEs (mean) and the mean square errors (MSEs) given by
MSE(ψ̂) = Var(ψ̂) + [Bias(ψ̂)]2. We can note that the estimates are closer to the true values and that
the MSE values decrease when n increases.

The results of the Monte Carlo in Table 1 indicate that the MSEs of the MLEs of the parameters
decay toward zero when the sample size increases, as expected under standard asymptotic theory. As
n increases, the means of the estimates of the parameters tend to be closer to the true parameter values.
This fact supports that the asymptotic normal distribution provides an adequate approximation to the
finite sample distribution of the MLEs. The normal approximation can often be improved by using
bias adjustments to these estimators.

4. Influence diagnostics

Performing a sensitivity analysis is strongly advisable since regression models are often sensitive to
underlying model assumptions. Cook (1986) used this idea to motivate the assessment of the influence
analysis. He also suggested that more confidence can be given to a model, which is relatively stable
under small modifications. The best known perturbation schemes are based on local influence in
which the effects are studied when completely removing cases from the analysis. This reasoning
forms the basis for our local influence methodology and in doing so it will be possible to determine
which subjects might be influential for the analysis.

Another approach is suggested by Cook (1986), where weights are given to observations instead
of removing them. Local influence calculation can be carried out for model (3.2). If likelihood
displacement LD(ω) = 2{l(ψ̂)−l(ψ̂ω)} is used, where ψ̂ω denotes the MLE under the perturbed model,
the normal curvature for ψ at the direction d, ∥ d ∥ = 1, is given by Cd(ψ) = 2|dT∆T [

L̈(ψ)
]−1
∆d|.

Here, ∆ is a (2p + 5) × n matrix that depends on the perturbation scheme, whose elements are given
by ∆vi = ∂

2l(ψ|ω)/∂ψv∂ωi (i = 1, 2, . . . , n and v = 1, 2, . . . , 2p + 5) evaluated at ψ̂ and ω0, where ω0
is the no perturbation vector (Cook, 1986).
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We can also determine normal curvatures Cd(λ), Cd(θ1), and Cd(θ2) to perform various index plots,
for instance, the index plot of dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue of
the matrix B = −∆T [L̈(ψ)]−1∆ and the index plots of Cdi (λ), Cdi (θ1), and Cdi (θ2), so-called total local
influence (Lesaffre and Verbeke, 1998), where di denotes an n × 1 vector of zeros with one at the ith

position. Thus, the curvature at direction di takes the form Ci = 2|∆T
i [L̈(ψ)]−1∆i|, where ∆T

i denotes
the ith row of ∆. It is usual to point out those cases such that Ci ≥ 2C̄, where C̄ = 1/n

∑n
i=1 Ci.

Next, we evaluate, for three perturbation schemes, the matrix

∆ = (∆vi)(2p+5)×n =

(
∂2l (ψ|ω)
∂ψv∂ωi

)
(2p+5)×n

,

where v = 1, 2, . . . , 2p + 5 and i = 1, 2, . . . , n, considering the model defined in (3.1) and its log-
likelihood function given by (3.2) and (3.3).

4.0.1. Case-weight perturbation

Consider the vector of weights ω = (ω1, . . . , ωn)T . In this case, the perturbed log-likelihood function
takes the form:

• Frank-LOLLW model

l (ψ|ω) =
n∑

i=1

ωi (zi1 + zi2) + α1

n∑
i=1

ωi log (ui1) + α2

n∑
i=1

ωi log (ui2)

+ λ

n∑
i=1

ωi (1 + qi1 + qi2) + (α1 − 1)
n∑

i=1

ωi log (1 − ui1) + (α2 − 1)
n∑

i=1

ωi log (1 − ui2)

− 2
n∑

i=1

ωi log
{
exp (λ) − exp

[
λ (1 + qi1)

]
+ exp

[
λ (qi1 + qi2)

] − exp
[
λ (1 + qi2)

]}
− 2

n∑
i=1

ωi log
[
(1 − ui1)α1 + uα1

i1

]
− 2

n∑
i=1

ωi log
[
(1 − ui2)α2 + uα2

i2

]
;

• Clayton-LOLLW

l (ψ|ω) =
n∑

i=1

ωi (zi1 + zi2) + α1

n∑
i=1

ωi log (ui1) + α2

n∑
i=1

ωi log (u2i)

+ α1

n∑
i=1

ωi log (1 − ui1) + α2

n∑
i=1

ωi log (1 − ui2) − (1 + λ)
n∑

i=1

ωi log (qi1qi2)

− 2
n∑

i=1

ωi log
[
(1 − ui1)α1 + uα1

i1

]
− 2

n∑
i=1

ωi log
[
(1 − u2i)α2 + uα2

2i

]
−

(
2 +

1
λ

) n∑
i=1

ωi log
[
qλ1i + qλ2i − 1

]
,

where zik = yik − xT
ikβk/σk, 0 ≤ ωi ≤ 1, ω0 = (1, . . . , 1)T , i = 1, . . . , n and k = 1, 2. Note that qi1, qi2,

ui1 and ui2 are defined in equations (3.2) and (3.3). The matrix elements of ∆ = (∆λλλ,∆θθθ1 ,∆θθθ2 )T can be
evaluated numerically.
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4.0.2. Response perturbation

Consider that each yi1 and yi2 is perturbed as yi1w = yi1 + ωiS y1 and yi2w = yi2 + ωiS y2, respectively,
where S yk is a scale factor that may be estimated by the standard deviation of Yk and ωi ∈ R.

Here, the perturbed log-likelihood function can be expressed as

• Frank-LOLLW model

l (ψ|ω) = n log
{
λα1 α2

[
exp (λ) − 1

]
σ1 σ2

}
+

n∑
i=1

(
z∗i1 + z∗i2

)
+ α1

n∑
i=1

log
(
u∗i1

)
+ α2

n∑
i=1

log
(
u∗i2

)
+ λ

n∑
i=1

(
1 + q∗i1 + q∗i2

)
+ (α1 − 1)

n∑
i=1

log
(
1 − u∗i1

)
+ (α2 − 1)

n∑
i=1

log
(
1 − u∗i2

)
− 2

n∑
i=1

log
{
exp (λ) − exp

[
λ
(
1 + q∗i1

)]
+ exp

[
λ
(
q∗i1 + q∗i2

)]
− exp

[
λ
(
1 + q∗i2

)]}
− 2

n∑
i=1

log
[(

1 − u∗i1
)α1
+ u∗α1

i1

]
− 2

n∑
i=1

log
[
(1 − ui2)∗α2 + u∗α2

i2

]
; (4.1)

• Clayton-LOLLW model

l (ψ|ω) = n log
[
(1 + λ) α1 α2

σ1 σ2

]
+

n∑
i=1

(
z∗i1 + z∗i2

)
+ α1

n∑
i=1

log
(
u∗i1

)
+ α2

n∑
i=1

log
(
u∗2i

)
+ α1

n∑
i=1

log
(
1 − u∗i1

)
+ α2

n∑
i=1

log
(
1 − u∗i2

)
− (1 + λ)

n∑
i=1

log
(
q∗i1q∗i2

)
− 2

n∑
i=1

log
[(

1 − u∗i1
)α1
+ u∗α1

i1

]
− 2

n∑
i=1

log
[(

1 − u∗2i

)α2
+ u∗α2

2i

]
−

(
2 +

1
λ

) n∑
i=1

log
[
q∗λ1i + q∗λ2i − 1

]
, (4.2)

where

q∗ik =

(
1 − u∗ik

)αk(
1 − u∗ik

)αk
+ u∗αk

ik

, u∗ik = exp
[
− exp

(
z∗ik

)]
, z∗i1 =

y∗i1 − xT
i β1

σ1
, z∗i2 =

y∗i2 − xT
i β2

σ2
,

y∗i1 = yi1 + ωiS y1, y∗i2 = yi2 + ωiS y2, i = 1, . . . , n and k = 1, 2.

Again, the matrix elements of ∆ = (∆λλλ,∆θθθ1 ,∆θθθ2 )T can be obtained numerically.

4.0.3. Explanatory variable perturbation

Consider now an additive perturbation on a particular continuous explanatory variable, say Xt, by
setting xitω = xit + ωiS x, where S x is a scaled factor, ωi ∈ R. This perturbation scheme leads to the
following expressions for the log-likelihood function:
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• Frank-LOLLW model

l (ψ|ω) = n log
{
λα1 α2

[
exp (λ) − 1

]
σ1 σ2

}
+

n∑
i=1

(
z†i1 + z†i2

)
+ α1

n∑
i=1

log
(
u†i1

)
+ α2

n∑
i=1

log
(
u†i2

)
+ λ

n∑
i=1

(
1 + q†i1 + q†i2

)
+ (α1 − 1)

n∑
i=1

log
(
1 − u†i1

)
+ (α2 − 1)

n∑
i=1

log
(
1 − u†i2

)
− 2

n∑
i=1

log
{
exp (λ) − exp

[
λ
(
1 + q†i1

)]
+ exp

[
λ
(
q†i1 + q†i2

)]
− exp

[
λ
(
1 + q†i2

)]}
− 2

n∑
i=1

log
[(

1 − u†i1
)α1
+ u†α1

i1

]
− 2

n∑
i=1

log
[
(1 − ui2)†α2 + u†α2

i2

]
;

• Clayton-LOLLW model

l (ψ|ω) = n log
[
(1 + λ) α1 α2

σ1 σ2

]
+

n∑
i=1

(
z†i1 + z†i2

)
+ α1

n∑
i=1

log
(
u†i1

)
+ α2

n∑
i=1

log
(
u†2i

)
+ α1

n∑
i=1

log
(
1 − u†i1

)
+ α2

n∑
i=1

log
(
1 − u†i2

)
− (1 + λ)

n∑
i=1

log
(
q†i1q†i2

)
− 2

n∑
i=1

log
[(

1 − u†i1
)α1
+ u†α1

i1

]
− 2

n∑
i=1

log
[(

1 − u†2i

)α2
+ u†α2

2i

]
−

(
2 +

1
λ

) n∑
i=1

log
[
q†λ1i + q†λ2i − 1

]
,

where

q†ik =

(
1 − u†ik

)αk(
1 − u†ik

)αk
+ u†αk

ik

, u†ik = exp
[
− exp

(
z†ik

)]
, z†ik =

yik − x†⊤i βk

σk
,

x†⊤i βk = β0k + β1k xi1 + β2k xi2 + · · · + βtk (xit + ωiS x) + · · · + βpk xip, i = 1, . . . , n and k = 1, 2.

The matrix elements of ∆ = (∆λλλ,∆θθθ1 ,∆θθθ2 )T can be evaluated numerically.

5. Application: the oral health-related quality data

In this section, we consider a dataset provided by the Department of Community Dentistry, Divi-
sion of Health Education and Health Promotion, Piracicaba Dental School, University of Campinas-
UNICAMP. The present study has the objective of assessing changes in schoolchildren’s oral health-
related quality of life (OHRQoL) in a three year follow-up exam and evaluating the impact of caries
incidence on the OHRQoL of adolescents. In 2009, a baseline sample of 515 adolescents, represen-
tative of the 12-year-old population in the city of Juiz de Fora, Minas Gerais (Brazil), was evaluated
(de Paula et al., 2012). The final sample, reevaluated 3 years after the baseline exam, is composed of
291 adolescents, and represents a follow-up rate of 56.5%. Of these, 150 (51.5%) are female and 238
(81.8%) study at public schools.
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The OHRQoL, as the name indicates, involves quality of life aspects related to the mouth. The
response variable is the assessment of the OHRQoL of children. The data are obtained from a ques-
tionnaire called the Children Perceptions Questionnaire (CPQ) administered to children between the
ages of 11 and 14 years, say CPQ11−14. The same questionnaire is applied twice, first to establish the
baseline (start of the study) and then three years later to the same children. Therefore, the responses
are bivariate associated with each child. The CPQ11−14 determines the OHRQoL and is composed of
36 items, grouped into four health domains:

• Oral symptoms, composed of 6 questions;

• Functional limitations, composed of 9 questions;

• Emotional well-being, composed of 9 questions; and

• Social well-being, composed of 12 questions.

In each item there are questions about the frequency of events involving the teeth, lips and jaw in
the past three months. Responses are given on a Likert scale from 1 to 4: “none” = 0; “once or twice”
= 1; “sometimes” = 2; “often” = 3; and “very often” = 4. This allows obtaining an overall score by
adding the number of each item. Higher scores on the CPQ11−14 indicate worse OHRQoL, because
individuals who say “often” or “very often”, for example, will be more likely to have experienced
toothaches or other dental problems. Another index used in the study is decayed, missing or filled
teeth (DMFT), which reflects the caries experience in children’s permanent teeth.

In this analysis, we consider the bivariate regression model by means of the Clayton and Frank
copulas, and take the LOLLW distribution and its corresponding sub-models as marginal distributions.
The variables employed are:

• ti1 = OHRQoL(0): Overall OHRQL score at baseline (measured at the start of the study);

• ti2 = OHRQoL(3): Overall OHRQL score at time of follow-up (measured three years later);

• xi1: incidence of component D of DMFT: If there is an increase in decayed teeth during the three
years (0 = increased, 1 = no change, 2 = declined);

• xi2: incidence of component M of DMFT: If there is an increase in missing teeth during the three
years (0 = increased, 1 = no change);

• xi3: incidence of the F component of DMFT: If there is an increase in the number of fillings/rest-
orations during the three years (0 = smaller number of filled teeth − probably due to extraction, 1
= no change, 2 = larger number of teeth with fillings);

• xi4: total DMFT score: Sum of the scores of the three elements listed above - forming the complete
number of permanent decayed, missing and filled permanent teeth. Therefore, in the case of the
file, we dichotomize whether or not there is an increase in the DMFT index during the three years,
subtracting the final − initial score (0 = increased, 1 = no change);

• xi5: incidence of bleeding gums: The presence of bleeding gums is measured at the start and after
the three years (0 = no gum bleeding in 2009 and bleeding in 2012 [new cases], 1 = gum bleeding
continued, 2 = gum bleeding in 2009 and none in 2012 [cure]);
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Table 2: Descriptive statistics for the oral health-related quality dataset

Data Mean Median Mode SD Variance Skewness Kurtosis Min Max
OHRQoL(0) 25.471 18.0 4.0 23.421 548.547 1.224 0.872 0.10 106.0
OHRQoL(3) 20.896 15.0 0.1 19.712 388.588 1.340 1.431 0.10 90.0

• xi6: need for dental treatment: This evaluated if there was any increasing in the need for dental
treatment of the child during the three years, measured by the Dental Aesthetic Index. This index
measures the social acceptability of the dental appearance through evaluation of 10 occlusal charac-
teristics (0 = new cases/need for dental treatment in 2009, but such need appeared during the three
years, 1 = no change in characteristics, 2 = need for dental treatment in 2009 but not in 2012);

• xi7: use of retainer or braces: This evaluated whether the child received orthodontic treatment
(braces and/or retainer) at any time during the study period (0 = no, 1 = yes);

• xi8: household crowding: This measured the change in the ratio of the number of people in the
child’s home to the number of bedrooms in 2009 and 2012 (0 = increased, 1 = remained unchanged,
2 = decreased);

• xi9: general quality of life questionnaire: This refers to the difference in the OHRQoL between
2009 and 2012 (0 = worse, 1 = remained unchanged, 2 = improved).

• xi10: visit to dentist: This measured whether the child visited a dentist in the past three years, only
asked in 2012 (0 = no, 1 = yes);

• xi11: gender (0 = girl, 1 = boy),

where i = 1, . . . , 291.
First, we present some descriptive statistics of the two-dimensional response variable. Table 2

gives a descriptive summary of these data showing different degrees of skewness and kurtosis. Fig-
ure 3(a) displays the plot of the bivariate distribution. The contour plots (with level curves) provide
information about the normality and correlation at the same time. Figure 3(b) reveals a positive cor-
relation between the variables OHRQoL(3) and OHRQoL(0), because the contour lines (level curves)
are positioned around the main diagonal.

The Kendall tau rank correlation coefficient determined for the baseline and follow-up is τ = 0.49
(p-value < 0.001), indicating a positive association between the variables, as can also be noted in the
dispersion plot in Figure 4(b). It is observed from the QQ plot. Figure 4(a) reveals that the data do not
follow a bivariate normal distribution. In this paper, we use the copula method to assess the changes
in the baseline and follow-up scores according to changes in the environmental and clinical profiles
during the study period and assess the dependence between these scores. To explain the times until the
occurrence or distinct event in a single individual, the bivariate regressions obtained through copulas
are adopted. The Frank and Clayton’s copulas given in Section 3 are used to model the data.

We analyze the dataset considering that the random variables Yi1 = log(Ti1) and Yi2 = log(Ti2) are
related to the explanatory variables by a linear model

yik = β0k + β11kDi11 + β12kDi12 + β2k xi2 + β31kDi31 + β32kDi32 + β4k xi4 + β51kDi51 + β52kDi52

+ β61kDi61 + β62kDi62 + β7k xi7 + β81kDi81 + β82kDi82 + β91kDi91 + β92kDi92 + β10k xi10

+ β1k xi11 + σkzik, i = 1, . . . , 291, k = 1, 2, (5.1)
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Figure 3: (a) Bivariate distribution; (b) Positive correlation between the variables OHRQoL(0) and OHRQoL(3).
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Figure 4: (a) The dispersion plot OHRQoL(3) versus OHRQoL(0) and (b) QQ plot.

where z1 and z2 are the random errors of the model with joint distribution given in equations (2.13) and
(2.14). Note that the variables (D11,D12), (D31,D32), (D51,D52), (D61,D62), (D81,D82), (D91,D92) are
dummy variables corresponding to the variables x1, x3, x5, x6, x8, and x9, respectively.

We evaluate the MLEs of the model parameters using the NLMixed procedure in SAS. The val-
ues of the global deviance (GD), Akaike information criterion (AIC), consistent Akaike information
criterion (CAIC), and Bayesian information criterion (BIC) statistics are listed in Tables 3 and 4. The
lowest values of the information criteria correspond to the Frank-LOLLW bivariate regression model,
which provides a better fit to the current data than the other models.

From the figures in Tables 3 and 4, we note that for the Clayton and Frank’s copulas, the model that
provides the best fit (lowest value of the AIC, CAIC, and BIC statistics), is the one which considers
the LOLLW distribution in both components. Therefore, to decide which of the copulas to use in
the subsequent analysis, we perform the generalized likelihood ratio test (GLRT) for discriminating
among non-nested models as presented next (Cameron and Trivedi, 1998). The value of the GLRT
statistic is 10.4664. Since this value is greater than 1.96, we reject the null hypothesis (at the 5%
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Table 3: GD, AIC, BIC, and CAIC statistics for the Clayton-LOLLW bivariate regression model and submodels
based on the oral health-related quality dataset

Bivariate regression models GD AIC CAIC BICYi1 × Yi2
LOLLW × LOLLW 1799.8207 1881.8207 1895.6520 2032.4269
LOLLW × LOLLE 1818.9485 1898.9485 1912.0685 2045.8814

LOLLW × LW 1825.1329 1905.1329 1918.2529 2052.0658
LOLLW × LE 1827.5811 1905.5811 1918.0114 2048.8407

LOLLE × LOLLW 1811.3240 1891.3240 1904.4440 2038.2569
LW ×LOLLW 1809.4347 1889.4347 1902.5547 2036.3677
LE ×LOLLW 1812.0360 1890.0360 1902.4663 2033.2956

LW × LW 1831.4803 1909.4803 1921.9106 2052.7399
LW × LE 1833.1898 1909.1898 1920.9517 2048.7761
LE × LW 1837.7974 1913.7974 1925.5593 2053.3837
LE × LE 1842.0951 1916.0951 1927.2097 2052.0081

GD = global deviance; AIC = Akaike information criterion; CAIC = consistent Akaike information criterion; BIC =
Bayesian information criterion; LOLLW = log-odd-log-logistic-Weibull; LOLLE = log-odd log-logistic exponential; LW
= log-Weibull; LE = log-exponential.

Table 4: GD, AIC, BIC, and CAIC statistics for the Frank-LOLLW bivariate regression model and submodels
based on the oral health-related quality dataset

Bivariate regression models GD AIC CAIC BICYi1 × Yi2
LOLLW × LOLLW 1685.4972 1767.4972 1781.3285 1918.1035
LOLLW × LOLLE 1710.6342 1790.6342 1803.7542 1937.5671

LOLLW × LW 1714.4440 1794.4440 1807.5640 1941.3769
LOLLW × LE 1714.9614 1792.9614 1805.3917 1936.2210

LOLLE × LOLLW 1704.0638 1784.0638 1797.1838 1930.9967
LW ×LOLLW 1702.3472 1782.3472 1795.4672 1929.2801
LE ×LOLLW 1704.2458 1782.2458 1794.6761 1925.5054

LW × LW 1726.8332 1804.8332 1817.2635 1948.0928
LW × LE 1727.4266 1803.4266 1815.1885 1943.0129
LE × LW 1730.0146 1806.0146 1817.7765 1945.6009
LE × LE 1731.9501 1805.9501 1817.0647 1941.8631

GD = global deviance; AIC = Akaike information criterion; CAIC = consistent Akaike information criterion; BIC =
Bayesian information criterion; LOLLW = log-odd-log-logistic-Weibull; LOLLE = log-odd log-logistic exponential; LW
= log-Weibull; LE = log-exponential.

significance level) of equivalence between the models (attributing the LOLLW distribution to both
components of the copula) and considering both the Frank and Clayton’s copulas. So, the best model
fitted to the data is the one for the Frank copula. MLEs of the parameters for the Frank-LOLLW
bivariate regression model are listed in Table 5.

Sensibility analysis

We apply the local influence theory developed in Section 4, where case-weight perturbation is used,
and obtain the value of the maximum curvature Cdmax = 2.8461. Figure 5(a) displays the plots of the
eigenvector corresponding to dmax, and reveals that the observations ♯61 and ♯86 are again distinct in
relation to others.

The influence of perturbations on the observed survival times is now analyzed (response variable
perturbation). The value of the maximum curvature is Cdmax = 9.3510. Figure 5(b) plots dmax versus
the observation index, where we note that there is no discrepant point.
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Table 5: Maximum likelihood estimates for the Frank-LOLLW bivariate regression model based on the oral
health-related quality dataset

Parameter Estimate SE p-value Parameter Estimate SE p-value
λ 6.5401 0.5822 β122 0.1608 0.2993 0.5911
β01 2.8875 0.4801 < 0.0100∗∗ β22 −0.1228 0.3021 0.6843
β111 0.0882 0.1589 0.5789 β312 −0.2325 0.2155 0.2806
β121 0.1117 0.2790 0.6888 β322 −0.2052 0.3214 0.5233
β21 0.2284 0.2791 0.4133 β42 −0.1673 0.1836 0.3622
β311 −0.1450 0.1904 0.4463 β512 −0.1270 0.1466 0.3863
β321 0.0117 0.2783 0.9664 β522 0.3009 0.2392 0.2084
β41 0.1433 0.1652 0.3855 β612 0.1642 0.3793 0.6651
β511 −0.2423 0.1288 0.0599 β622 0.4168 0.3630 0.2509
β521 0.4393 0.2053 0.0323∗∗ β72 0.1300 0.1716 0.4488
β611 0.1012 0.3484 0.7714 β812 0.0469 0.1457 0.7473
β621 0.4567 0.3381 0.1768 β822 −0.0366 0.1681 0.8277
β71 0.1086 0.1485 0.4648 β912 0.0019 0.1442 0.9897
β811 0.1763 0.1249 0.1579 β922 0.2005 0.1013 0.0477∗∗
β821 0.4036 0.1468 0.0060∗∗ β102 −0.3069 0.1289 0.0173∗∗
β911 0.0873 0.1271 0.4921 β12 −0.0504 0.0965 0.6016
β921 0.2182 0.0917 0.0173∗∗ σ1 0.5178 0.0644
β101 −0.3948 0.1078 0.0003∗∗ σ2 0.5452 0.0540
β11 −0.0575 0.0844 0.4960 α1 0.4779 0.0723
β02 3.4165 0.4980 < 0.0100∗∗ α2 0.4377 0.0557
β112 −0.0502 0.1907 0.7924

SE = standard error. ∗∗ Significant at a level of 5%.
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Figure 5: Index plot of dmax for ψ on the oral health-related quality dataset.
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Figure 6: Total local influence for ψ on the oral health-related quality dataset.
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Table 6: Maximum likelihood estimates for the Frank-LOLLW bivariate regression model removing
observations ♯55, ♯61, and ♯86 based on the oral health-related quality dataset - final model

Parameter Estimate SE p-value Parameter Estimate SE p-value
λ 6.2470 0.5690 β122 0.2176 0.2930 0.4578
β01 2.8938 0.5000 < 0.0100∗∗ β22 0.0184 0.2831 0.9480
β111 0.0447 0.1636 0.7846 β312 −0.2316 0.2165 0.2847
β121 0.1323 0.2865 0.6442 β322 −0.2537 0.3299 0.4418
β21 0.3324 0.2844 0.2424 β42 −0.1568 0.1835 0.3928
β311 −0.1455 0.1976 0.4615 β512 −0.1673 0.1409 0.2351
β321 −0.014 0.2893 0.9614 β522 0.1424 0.2510 0.5706
β41 0.1558 0.1689 0.3563 β612 0.0192 0.3662 0.9583
β511 −0.2733 0.1314 0.0375∗∗ β622 0.3214 0.3516 0.3607
β521 0.3427 0.2268 0.1308 β72 0.1092 0.1680 0.5159
β611 −0.0031 0.3617 0.9931 β812 0.0204 0.1432 0.8868
β621 0.4022 0.3546 0.2567 β822 −0.0204 0.1619 0.8998
β71 0.0886 0.1482 0.5499 β912 −0.0732 0.1433 0.6095
β811 0.1540 0.1284 0.2304 β922 0.2876 0.1005 0.0042∗∗

β821 0.4016 0.1481 0.0067∗∗ β102 −0.2534 0.1321 0.0551
β911 0.0255 0.1321 0.8472 β12 −0.0935 0.1021 0.3596
β921 0.2838 0.0959 0.0031∗∗ σ1 0.5484 0.0692
β101 −0.3470 0.1136 0.0023∗∗ σ2 0.5293 0.0522
β11 −0.0988 0.0925 0.2852 α1 0.5163 0.0803
β02 3.4341 0.4814 < 0.0100∗∗ α2 0.4248 0.0539
β112 −0.1077 0.1886 0.5681

SE = standard error. ∗∗ Significant at a level of 5%.

The total local influence Ci is shown in Figures 6 for case-weight and response perturbation,
respectively. Observations ♯55 and ♯86 are distinct in relation to the others.

We conclude that the diagnostic analysis (global influence and local influence) detected the fol-
lowing three cases as potentially influential observations: ♯55, ♯61, and ♯86.

Observation ♯55 refers to the student with equal times OHRQoL(0) and OHRQoL(3), respec-
tively, of 92 and 87, who: maintained the indices C and P of the CPOD, received fillings and did
not increase the rate of caries, increased the CPOD index, had gum bleeding treated, maintained
orthodontic treatment, did not use a retainer, maintained the same household crowding, suffered a
deterioration in quality of life, had visited the dentist in the past 3 years and was female. The observa-
tion ♯61 refers to the student with equal times OHRQoL(0) and OHRQoL(3), respectively, to 66 and
69, who: maintained the indices C, P, and O of the CPOD, maintained the CPOD index, continued
to suffer gum bleeding, maintained orthodontic treatment, did not use a retainer, maintained the same
household crowding, suffered deterioration in quality of life, had not visited the dentist for the past 3
years and was male. Finally, the observation ♯86 refers to the student with equal times OHRQoL(0)
and OHRQoL(3), respectively, to 73 and 67, who: maintained the indices C, P, and O of the CPOD,
maintained the CPOD index, continued to have gum bleeding, maintained dental treatment, did not
use a retainer, maintained the same household crowding, maintained the same quality of life, had not
visited the dentist in the past 3 years and was male. Therefore, the MLEs of the fitted model after
removing the observations ♯55, ♯61 and ♯86 are listed in Table 6. This removal was also suggested by
the researcher in charge of the study.

For example, the covariate D82 (household crowding) is significant in the first half, meaning that
there is a significant difference between the levels 0 (= increased) and 2 (= decreased). Figure 7 shows
all the significant variables.

More information is provided by a visual comparison of the histogram of the data with the fitted
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Figure 7: Plot of significant variables.
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Figure 8: Fitted LOLLW densities for the oral health-related quality dataset.

density functions displayed in Figure 8. We also conclude that the marginal models with LOLLW
distribution provide an adequate fit to the data; therefore, the Frank-LOLLW bivariate regression
model is more appropriate to explain these data.

6. Conclusions

We consider a parametric approach for bivariate survival data using location-scale marginal mod-
els having LOLLW distributions.The dependence structure between events is modeled using Archi-
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medean Frank and Clayton copulas. We present a general model that contain various sub-models.
Our proposed bivariate model can help discriminate among models. We define the models, estimation
techniques and diagnosis methods of global and total influence. These techniques were shown as im-
portant tools to evaluate the robustness of the bivariate response regression models. In the simulated
examples, the local influence method is precise to detect the perturbed observations. In the exam-
ple with the oral health-related quality dataset, the use of the proposed model and some sensitivity
analysis methodology is illustrated. In the application section, we prove empirically that our bivariate
model is more suitable to explain the quality of the oral health-related data.
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