• Title/Summary/Keyword: Gauge method

Search Result 638, Processing Time 0.024 seconds

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF

Evaluation and Determination of Air Void for Asphalt Concrete using a dielectric constant measurement (유전율 측정을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Kim, Boo-Il;Kim, Yeong-Min;Cho, In-Sun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-104
    • /
    • 2009
  • This study was conducted to evaluate the relationship between the dielectric constant and air void of asphalt concrete. Standard specimens that have air voids of various range $(0%{\sim}20%)$ were used to measure the dielectric constant using parallel plate method that measures low frequency dielectric constant. From the tests, dielectric constant of asphalt concrete was tend to decrease as the frequency was increased, and the decrement slope was varied with the types of asphalt binders. Dielectric constant was decreased linearly as air void was increased from zero to twenty percent. Consequently, the effect of temperature and moisture content on dielectric constants of asphalt concrete was evaluated to develop the standard curve between dielectric constant and air void of asphalt concrete. The standard curve developed in this study can be used to calibrate or develop the algorithm of non-destructive density gauge.

  • PDF

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

The Effect of Transient Eccentric Propeller Forces on Shaft Behavior Measured Using the Strain Gauge Method During Starboard Turning of a 4,700 DWT Ship (스트레인 게이지법을 이용한 4,700 DWT 선박의 우현 전타시 프로펠러 편심추력이 축 거동에 미치는 영향 연구)

  • Lee, Jae-ung;Kim, Hong-Ryeol;Rim, Geung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.482-488
    • /
    • 2018
  • Generally, after stern tube bearing shows a significant increase in local load due to propeller load, which increases the potential adverse effects of bearing failure. To prevent this, research on regarding shaft alignment has been carried out with a focus on reducing the relative slope between the shaft and support bearing(s) under quasi-static conditions. However, for a more detailed evaluation of a shafting system, it is necessary to consider dynamic conditions. In this context, the results revealed that eccentric propeller force under transient conditions such as a rapid rudder turn at NCR, lead to fluid-induced instability and imbalanced vibration in the stern tube. In addition, compared with NCR condition, it has been confirmed that eccentric propeller forces given a rapid rudder starboard turn can lift a shaft from the stern tube bearing in the stern tube, contributes to load relief for the stern tube bearing.

An Analytical Study on the Durability Standard of Ground Structures Monitoring Sensors (지반구조물 계측센서의 내구연한 기준에 대한 분석적 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Purpose & Method: The purpose of this study is the theoretical study on the durability standard of ground structures monitoring sensors. A survey on the durability criteria for construction monitoring sensors of domestic construction companies and the income tax implementation regulations, the standard years of contents such as buildings and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. Result: The durability criterion such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the ground structure, is 8 to 10 years. Conclusion: The actual durability analysis by comparing the reliability of various monitoring sensors installed in dams at home and abroad, As a result of comprehensive study on the loss and damage rate of the maintenance monitoring sensor installed in the tunnel, the proper durability period of the built-in type monitoring sensor such as domestic pore pressure meter and earth pressure meter installed in the structure or the ground is 5 to 8 years it seems reasonable.

Analysis of Mechanical Properties of Polymer Material for Clear Aligner using Uniaxial Tensile Test (일축인장시험을 통한 투명교정장치용 고분자 소재의 역학적 특성 분석)

  • Jeong, Ji-Young;Je, Tae-Jin;Jeon, Eun-chae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.64-69
    • /
    • 2018
  • Clear aligners are popular in the field of dental orthodontic treatment because they offer a discreet alternative to braces due to their use of transparent materials. They are formed from flat transparent polymer materials by hot pressed molding. It is necessary to know the mechanical properties of the polymer materials to be able to form the exact shapes of the clear aligners. However, this information is not publicly available. In this study, we present a method to reliably measure the mechanical properties of clear aligner polymer materials and analyze the factors effecting these mechanical properties. First, we surveyed standards related to the mechanical properties of polymer materials to obtain reliable data. Consequently, ISO 527 was selected for use in this study because of the size and thickness of the flat transparent polymer material. The uniaxial tensile tester was constructed and it was verified whether displacement of a crosshead could be regarded as a displacement of gauge-length by optical analysis. Uniaxial tensile tests of three thicknesses from three different companies were performed and each engineering stress-strain curve was measured. Tensile strengths and elastic moduli were obtained by analysis of the stress-strain curves. The tensile strength and elastic modulus of ISO 527 was found to be approximately 50MPa and 2.3GPa, respectively. Both values showed material and thickness dependency.

Design and Performance Prediction of μN Level MEMS Thrust Measurement System of Piezoresistance Method (압저항 방식의 μN급 MEMS 추력 측정 시스템 설계 및 성능 예측)

  • Ryu, Youngsuk;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.111-117
    • /
    • 2018
  • In this study, an MEMS thrust measurement system was designed and a study on the performance prediction of system was performed to evaluate the performance of micro thruster. Thrust measurement system consists of beam, membrane, and piezoresistive sensor. An FEM analysis was carried out to verify the stability of the system, confirm the stress variation at the beam, and position the piezoresistive sensor. The stability of the designed system was verified by comparing the yield strength of the material with the maximum stress. The piezoresistive sensor was designed to be 20% of the length of the beam to obtain a high gauge factor. The size of the membrane and the beam of the reference model were designed to be $15mm{\times}15mm$, and $500{\mu}m{\times}500{\mu}m$, respectively.

Meta-Analysis of Associations Between Classic Metric and Altmetric Indicators of Selected LIS Articles

  • Vysakh, C.;Babu, H. Rajendra
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.4
    • /
    • pp.53-65
    • /
    • 2022
  • Altmetrics or alternative metrics gauge the digital attention received by scientific outputs from the web, which is treated as a supplement to traditional citation metrics. In this study, we performed a meta-analysis of correlations between classic citation metrics and altmetrics indicators of library and information science (LIS) articles. We followed the systematic review method to select the articles and Erasmus Rotterdam Institute of Management Guidelines for reporting the meta-analysis results. To select the articles, keyword searches were conducted on Google Scholar, Scopus, and ResearchGate during the last week of November 2021. Eleven articles were assessed, and eight were subjected to meta-analysis following the inclusion and exclusion criteria. The findings reported negative and positive associations between citations and altmetric indicators among the selected articles, with varying correlation coefficient values from -.189 to 0.93. The result of the meta-analysis reported a pooled correlation coefficient of 0.47 (95% confidence interval, 0.339 to 0.586) for the articles. Sub-group analysis based on the citation source revealed that articles indexed on the Web of Science showed a higher pooled correlation coefficient (0.41) than articles indexed in Google Scholar (0.30). The study concluded that the pooled correlation between citation metrics with altmetric indicators was positive, ranging from low to moderate. The result of the study gives more insights to the scientometrics community to propose and use altmetric indicators as a proxy for traditional citation indicators for quick research impact evaluation of LIS articles.

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

A Pilot Experiments for Evaluation of Cover Soil Loss from Inclined Upland around Remediated Abandoned Mine Site - The Condition of Chemical Characteristics and Inclination - (광해복원 경사지 밭의 토양유실 평가를 위한 현장실험 - 화학적 성질과 경사도 조건에서 -)

  • Yun, Sung-Wook;Kang, Hui-Cheon;Kwon, Yo-Seb;Koh, Il-Ha;Jeong, Mun-Ho;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • In-situ pilot experiment was carried out to establish a countermeasure on the soil loss from the hill side uplands that was rehabilitated by soil remediation method nearby abandoned mine sites for 2 years. It was considered that the affect of an inclination of cover surface, a stabilization treatment of cover layer by lime and steel refining slag (SRS) and a vegetation of soil surface as an effect factors in the experiment. It was constructed 4 lysimeters (plots, 22 m long, 4 m width) on the hilly side (37% inclination). One plot was control and two plots was treated by 1% lime and SRS. A remind one plot was modified a inclination to 27% to compare the affect of inclination on the amount of cover soil loss. It was attached a reservior tank and water level gauge in the end of lysimeters to measure the amount of the surface water flow and soil loss. It was also installed the automated sensors that could be collect the precipitation, soil moisture content, tension of cover layer in each plots. It was observed that the event of precipitation were caused the soil loss and it were related the physical and chemical properties of cover soil and inclination of surface layer of plots. During the experiment, it was exceeded the national regulation (50 t/ha/yr) in 37% inclination plots even though it was vegetated on the cover soil surface. However, in 27% inclination plot, it was shown that the amount of soil loss was maintained below the national regulation and, more ever, vegetation could reduce the the amount of soil loss. Therefore it was expected that such results could be applied to the future design of rehabilitation projects on the polluted farmland nearby abandoned mine sites.