• Title/Summary/Keyword: Gauge method

Search Result 632, Processing Time 0.036 seconds

THE SECOND-ORDER STABILIZED GAUGE-UZAWA METHOD FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY

  • Kim, Taek-cheol;Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.193-219
    • /
    • 2019
  • The Navier-Stokes equations with variable density are challenging problems in numerical analysis community. We recently built the 2nd order stabilized Gauge-Uzawa method [SGUM] to solve the Navier-Stokes equations with constant density and have estimated theoretically optimal accuracy. Also we proved that SGUM is unconditionally stable. In this paper, we apply SGUM to the Navier-Stokes equations with nonconstant variable density and find out the stability condition of the algorithms. Because the condition is rather strong to apply to real problems, we consider Allen-Cahn scheme to construct unconditionally stable scheme.

Advancing the Gauge Block Interferometer and Automating the Gauge Block Calibration (게이지 블록 간섭계의 선진화 및 완전 자동화)

  • Kang Chu-Shik;Kim Jae-Wan;Suh Ho-Suhng;Lee Won-Kyu;Kim Jong-Ahn
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.547-550
    • /
    • 2005
  • Gauge blocks are the most widely used material measure in length field in industry. The gauge block interferometer, which is the gauge block measuring system, comprises Twyman-Green type interferometer optics and light sources having precisely known wavelengths. This paper describes the work done for advancing the measurement system and automating the measurement process. The advancing of the system was done mainly by exchanging the spectral lamp with the frequency stabilized lasers, and the automation of measurement was achieved by modifying the hardware and developing the automatic measuring software. As the results of this work, the contrast of interferometric fringes of gauge blocks longer than 100 mm s enhanced about 20 times, and the measurement time has reduced down to 50% by automation.

  • PDF

Structural damage detection by principle component analysis of long-gauge dynamic strains

  • Xia, Q.;Tian, Y.D.;Zhu, X.W.;Xu, D.W.;Zhang, J.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.379-392
    • /
    • 2015
  • A number of acceleration-based damage detection methods have been developed but they have not been widely applied in engineering practices because the acceleration response is insensitive to minor damage of civil structures. In this article, a damage detection approach using the long-gauge strain sensing technology and the principle component analysis technology is proposed. The Long gauge FBG sensor has its special merit for damage detection by measuring the averaged strain over a long-gauge length, and it can be connected each other to make a distributed sensor network for monitoring the large-scale civil infrastructure. A new damage index is defined by performing the principle component analyses of the long-gauge strains measured from the intact and damaged structures respectively. Advantages of the long gauge sensing and the principle component analysis technologies guarantee the effectiveness for structural damage localization. Examples of a simple supported beam and a steel stringer bridge have been investigated to illustrate the successful applications of the proposed method for structural damage detection.

Design and Experiment on the Portable Gamma-Ray Pipe Thickness Gauge (휴대용 감마선파이프측후도의 설계와 시작)

  • 김덕진;김홍식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.4 no.2
    • /
    • pp.3-15
    • /
    • 1967
  • In the design of a portable Gamma-ray transistorized steel pipe thickness gauge, a pulse height discriminator and an anti-coincidence circuit could be eliminated by using a thin, less than 1/2inch, NaI(Tl) scintillation crystal in the detecting probe. This method could provide an economic design and fabrication of a gamma-ray back-scattering gauge allowing allmost the same accuracy and stability compared with the exsisting method. A gauge had been designed and fabricated with the above method and its accuracy was experimentall tested for the 200$^{\circ}C$ high temperature steel pipes. The result showed that the thermal drift was less than y percent which was acceptabel in the practical applications.

  • PDF

Robot assisted THA surgery using gauge based registration (게이지 정합 방법을 이용한 소형 인공고관절 수술로봇의 개발)

  • Shin, Ho-Chul;Park, Young-Bae;Yoon, Yong-San;Kwon, Dong-Soo;Lee, Jung-Ju;Won, Chung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.482-484
    • /
    • 2001
  • In orthopedics, hip arthroplasty is the operation that replaces damaged hip joint to artificial joint. In hip arthroplasty, quite better result can be achieved if robot is applied to machine cavity in bone, especially when cementless stem is used. So several kinds of robots were introduced for hip arthroplasty, but they used MRI, CT Scan, vision analysis and real time tracking of bone position for registration of robot. To overcome shortage of conventional robot surgery, gauge based registration method was proposed and small robot was designed. In this method, small robot is mounted on femur, and its position is determined by gauge registration method. Operation procedure was performed on model femur and result was analyzed. This robotic hip surgery system is expected to more adaptable in operation room.

  • PDF

THE STABILITY OF GAUGE-UZAWA METHOD TO SOLVE NANOFLUID

  • JANG, DEOK-KYU;KIM, TAEK-CHEOL;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.121-141
    • /
    • 2020
  • Nanofluids is the fluids mixed with nanoscale particles and the mixed nano size materials affect heat transport. Researchers in this field has been focused on modeling and numerical computation by engineers In this paper, we analyze stability constraint of the dominant equations and check validate of the condition for most kinds of materials. So we mathematically analyze stability of the system. Also we apply Gauge-Uzawa algorithm to solve the system and prove stability of the method.

Development of a Precipitation Gauge Using Ultrasonic Measuring Technique (초음파식 유량계측 기술을 응용한 강수량측정장치 개발)

  • Seo, Gang-Do;Hong, Sung-Taek;Ryu, Chool;Lee, Kyung-Woo;Ji, Yu-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2745-2752
    • /
    • 2013
  • The tipping-bucket and weight measuring type precipitation gauge has long been used worldwide for measuring rainfall. However, the conventional gauge has observation errors and its measurement range is limited by the device's resolution. In this paper, a new type of precipitation gauge that uses an innovative method by applying a new ultrasonic flow measuring technique was developed. This is the first time this technique is being used to gauge rainfall. The prototype was tested in the laboratory designated by the Korea Laboratory Accreditation Scheme (KOLAS). The rainfall intensity condition was 20~420 mm/H and the Standard Correction System for Precipitation Gauges was used. Results of the laboratory experiment showed that the proposed gauge has a ${\pm}2%$ margin of error. Consequently, it was proven that the proposed gauge is quite accurate and reliable for measuring precipitation.

A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge (강우관측소의 설치고도를 고려한 강우관측망 평가방안)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.113-124
    • /
    • 2014
  • The observed rainfall may be different along with the altitude of rain gauge, resulting in the fact that the characteristics of rainfall events occurred in urban or mountainous areas are different. Due to the mountainous effects, in higher altitude, the uncertainty involved in the rainfall observation gets higher so that the density of rain gauges should be more dense. Basically, a methodology for the rain gauge network evaluation, considering this altitude effect of rain gauges can account for the mountainous effects and becomes an important step for forecasting flash flood and calibrating of the radar rainfall. For this reason, in this study, we suggest a methodology for rain gauge network evaluation with consideration of the rain gauge's altitude. To explore the density of rain gauges at each level of altitude, the Equal-Altitude-Ratio of the density of rain gauges, which is based on the fixed amount of elevation and the Equal-Area-Ratio of the density of rain gauges, which is based on the fixed amount of basin area are designed. After these two methods are applied to a real watershed, it is found that the Equal-Area-Ratio generates better results for evaluation of a rain gauge network with consideration of rain gauge's altitude than the Equal-Altitude-Ratio does. In addition, for comparison between the soundness of rain gauge networks in other watersheds, the Coefficient of Variation (CV) of the rain gauge density by the Equal-Area-Ratio is served as the index for the evenness of the distribution of the rain gauge's altitude. The suggested method is applied to the five large watersheds in Korea and it is found that rain gauges installed in a watershed having less value of the CV shows more evenly distributed than the ones in a watershed having higher value of the CV.

Effects of Coulomb Gauge Condition and Current Continuity Condition on 3-Dimensional FE Analysis for Eddy Current Problems (3차원 와전류문제의 유한요소해석에서 쿨롱게이지조건과 전류연속조건의 영향)

  • Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.483-491
    • /
    • 2005
  • To solve the 3D eddy current problems by using FE(finite element) method with MVP(magnetic vector potential) and electric scalar potential, Coulomb gauge condition and current continuity condition have to be considered. Coulomb gauge condition enforced on existing FE formulations to insure the uniqueness of MVP looks unnatural and current continuity condition which can be driven from Ampere's law looks unnecessary. So in this paper the effect of two conditions on FE formulations are investigated in order to help to obtain accurate numerical simulation results.

Evaluation on the Measurement Capability of Gauge Blocks for National Calibration and Test Institutions (길이분야 국가교정검사기관에 대한 게이지블록의 측정능력 평가)

  • Lee, Yong Sang;Eom, Cheon Il;Kang, Chu-Shik;Eom, Tae Bong;Han, Jin Wan;Kirn, Myung Soon;Chung, Myung Sai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.62-66
    • /
    • 1996
  • Since 1980, Korea Research Institute of Standards and Science (KRISS) have performed 8 round robin tests in gauge block measurement in order to evaluate the measurement capability and the state of environment control of National Calibration and Test Institutions. Two sets of five gauge blocks (nominal size : 1, 3, 10, 25, 100 mm) having different thermal expansion coefficients for each set were circulated for the measurement, and the measurement results were collected and analyzed to evaluate the traceability to the standard of KRISS. The method and results of the test are presented.

  • PDF