Browse > Article
http://dx.doi.org/10.12941/jksiam.2020.24.121

THE STABILITY OF GAUGE-UZAWA METHOD TO SOLVE NANOFLUID  

JANG, DEOK-KYU (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
KIM, TAEK-CHEOL (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
PYO, JAE-HONG (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.24, no.2, 2020 , pp. 121-141 More about this Journal
Abstract
Nanofluids is the fluids mixed with nanoscale particles and the mixed nano size materials affect heat transport. Researchers in this field has been focused on modeling and numerical computation by engineers In this paper, we analyze stability constraint of the dominant equations and check validate of the condition for most kinds of materials. So we mathematically analyze stability of the system. Also we apply Gauge-Uzawa algorithm to solve the system and prove stability of the method.
Keywords
nanofluid; Gauge-Uzawa method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.C. Maxwell, A treatise on electricity and magnetism, Vol I, II, Oxford: Clarendon Press, 1873
2 Y.Xuan, Q.Li and W.Hu, Aggregation structure and conductivity of nanofluids, AIChE J. 49(4) (2003) 1038-1043   DOI
3 R.H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. part I: the Navier-Stokes equations, SIAM Journal on Numerical Analysis 43(3) (2005), 1043-1068   DOI
4 R.H. Nochetto and J.-H. Pyo, A finite element gauge-Uzawa method part II : Boussinesq equations, Mathematical Models Methods in Applied Sciences 16, (2006), 1599-1626   DOI
5 J.-H. Pyo and J. Shen, Gauge-Uzawa methods for incompressible flows with variable density, Journal of Computational Physics 221(1) (2007), 181-197   DOI
6 R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, 2001.
7 A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22, (1968) 745-762   DOI
8 R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires (II), Arch. Rational Mech. Anal., 33(5) (1969), 377-385   DOI
9 R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundamen. 1(3) (1962) 187-191   DOI
10 S.U.S Choi and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, 1995.
11 B.C. Pak and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(2) (1998) 151-170   DOI
12 D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transf. 47(24) (2004), 5181-5188   DOI
13 Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features on nanofluids, J. Heat Transfer 125(1) (2003), 151-155   DOI
14 G. Roy, C.T. Nguyen and P.-R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices and Microstructures 35(3-6) (2004), 497-511   DOI
15 R.S. Vajjha, D.K. Das and P.K. Namburu, Numerical study of fluid dynamic and heat transfer performance of $Al_2O_3$ and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow 31(4) (2010) 613-621   DOI
16 J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128(3), (2006) 240-250   DOI
17 M.M. Rahman and I.A. Eltayeb, Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition, Meccanica 48(3) (2013) 601-615   DOI
18 M.M. Rahman, A.V. Rosca and I. Pop, Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno's model, Int. J. Heat Mass Transf. 77 (2014) 1133-1143   DOI
19 M.A. Sheremet and I. Pop, Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno's mathematical model, Appl. Math. Comput. 266 (2015) 792-808   DOI
20 M.J. Uddin, M.S. Alam and M.M. Rahman, Natural convective heat transfer flow of nanofluids inside a quarter-circular enclosure using nonhomogeneous dynamic model, Arab. J. Sci. Eng. 42(5) (2017) 1883-1901   DOI
21 H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20(4), (1952) 571-571   DOI
22 G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83(1) (1977) 97-117   DOI
23 C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon, Int. J. Heat & Fluid Flow 28(6) (2007) 1492-1506   DOI
24 C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Mare, S. Boucher and H. Angue Mintsa, Viscosity data for $Al_2O_3$-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47(2) (2008) 103-111   DOI