• Title/Summary/Keyword: Gate Insulator

Search Result 380, Processing Time 0.034 seconds

A dense local block CNT-FEL BLU with common gate structure

  • Jeong, Jin-Woo;Kim, Dong-Il;Kang, Jun-Tae;Kim, Jae-Woo;Song, Yoon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.148-150
    • /
    • 2009
  • We have developed 15 inch, 130 blocks local dimming FEL using printed CNT emitters, in which multiple FE blocks were built with a common gate electrode. Cathode electrode formed by the double-metal technique, in which an insulator is interposed between the addressing bus and cathode electrode.

  • PDF

Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma ($BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Kang, Chan-Min;Yang, Xue;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

Characteristics of HfO2-Al2O3 Gate insulator films for thin Film Transistors by Pulsed Laser Deposition

  • Hwang, Jae Won;Song, Sang Woo;Jo, Mansik;Han, Kwang-hee;Kim, Dong woo;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.304.2-304.2
    • /
    • 2016
  • Hafnium oxide-aluminum oxide (HfO2-Al2O3) dielectric films have been fabricated by Pulsed Laser Deposition (PLD), and their properties are studied in comparison with HfO2 films. As a gate dielectric of the TFT, in spite of its high dielectric constant, HfO2 has a small energy band gap and microcrystalline structure with rough surface characteristics. When fabricated by the device, it has the drawback of generating a high leakage current. In this study, the HfAlO films was obtained by Pulsed Laser Deposition with HfO2-Al2O3 target(chemical composition of (HfO2)86wt%(Al2O3)14wt%). The characteristics of the thin Film have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The X-ray diffraction studies confirmed that the HfAlO has amorphous structure. The RMS value can be compared to the surface roughness via AFM analysis, it showed HfAlO thin Film has more lower properties than HfO2. The energy band gap (Eg) deduced by spectroscopic ellipsometer was increased. HfAlO films was expected to improved the interface quality between channel and gate insulator. Apply to an oxide thin Film Transistors, HfAlO may help improve the properties of device.

  • PDF

Electrical Characteristics of a-GIZO TFT by RF Sputtering System for Transparent Display Application

  • Lee, Se-Won;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.100-100
    • /
    • 2011
  • 2004년 일본의 Hosono 그룹에 의해 처음 발표된 이래로, amorphous gallium-indium-zinc oxide (a-GIZO) thin film transistors (TFTs)는 높은 이동도와 뛰어난 전기적, 광학적 특성에 의해 큰 주목을 받고 있다. 또한 넓은 밴드갭을 가지므로 가시광 영역에서 투명한 특성을 보이고, 플라스틱 기판 위에서 구부러지는 성질에 의해 플랫 패널 디스플레이나 능동 유기 발광 소자(AM-OLED), 투명 디스플레이에 응용될 뿐만 아니라, 일반적인 Poly-Si TFT에 비해 백플레인의 대면적화에 유리하다는 장점이 있다. 최근에는 Y2O3나 ZrO2 등의 high-k 물질을 gate insulator로 이용하여 높은 캐패시턴스를 유지함과 동시에 낮은 구동 전압과 빠른 스위칭 특성을 가지는 a-GIZO TFT의 연구 결과가 보고되었다. 하지만 투명 디스플레이 소자 제작을 위해 플라스틱이나 유리 기판을 사용할 경우, 기판 특성상 공정 온도에 제약이 따르고(약 $300^{\circ}C$ 이하), 이를 극복하기 위한 부가적인 기술이 필수적이다. 본 연구에서는 p-type Si을 back gate로 하는 Inverted-staggered 구조의 a-GIZO TFT소자를 제작 하였다. p-type Si (100) 기판위에 RF magnetron sputtering을 이용하여 Gate insulator를 증착하고, 같은 방법으로 채널층인 a-GIZO를 70 nm 증착하였다. a-GIZO를 증착하기 위한 sputtering 조건으로는 100W의 RF power와 6 mTorr의 working pressure, 30 sccm Ar 분위기에서 증착하였다. 소스/드레인 전극은 e-beam evaporation을 이용하여 Al을 150 nm 증착하였다. 채널 폭은 80 um 이고, 채널 길이는 각각 20 um, 10 um, 5 um, 2 um이다. 마지막으로 Furnace를 이용하여 N2 분위기에서 $500^{\circ}C$로 30분간 후속 열처리를 실시한 후에, 전기적 특성을 분석하였다.

  • PDF

Hydrogenated a-Si TFT Using Ferroelectrics (비정질실리콘 박막 트랜지스터)

  • Hur Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.576-581
    • /
    • 2005
  • In this paper. the a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. High k gate dielectric is required for on-current, threshold voltage and breakdown characteristics of TFT Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_3N_4$. Ferroelectric increases on-current and decreases threshold voltage of TFT and also ran improve breakdown characteristics.$SrTiO_4$ thin film is deposited by e-beam evaporation. Deposited films are annealed for 1 hour in N2 ambient at $150^{\circ}C\~600^{\circ}C$. Dielectric constant of ferroelectric is about 60-100 and breakdown field is about IMV/cm. In this paper, the TFT using ferroelectric consisted of double layer gate insulator to minimize the leakage current. a-SiN:H, a-Si:H (n-type a-Si:H) are deposited onto $SrTiO_3$ film to make MFNS(Metal/ferroelectric/a-SiN:H/a-Si:H) by PECVD. In this paper, TFR using ferroelectric has channel length of$8~20{\mu}m$ and channel width of $80~200{\mu}m$. And it shows that drain current is $3.4{\mu}A$at 20 gate voltage, $I_{on}/I_{off}$ is a ratio of $10^5\~10^8,\;and\;V_{th}$ is$4\~5\;volts$, respectively. In the case of TFT without having ferroelectric, it indicates that the drain current is $1.5{\mu}A$ at 20gate voltage and $V_{th}$ is $5\~6$ volts. If properties of the ferroelectric thin film are improved, the performance of TFT using this ferroelectric thin film can be advanced.

Fabrication and Operating Properties of Nb Silicide-coated Si-tip Field Emitter Arrays (니오비움 실리사이드가 코팅된 실리콘 팁 전계 방출 소자의 제조 및 동작 특성)

  • Ju, Byeong-Kwon;Park, Jae-Seok;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.521-524
    • /
    • 1999
  • Nb silicide was formed on the Si micro-tip arrays in order to improve field emission properties of Si-tip field emitter array. After silicidization of the tips, the etch-back process, by which gate insulator, gate electrode and photoresist were deposited sequentially and gate holes were defined by removing gradually the photoresist by $O_2$ plasma from the surface, was applied. Si nitride film was used as a protective layer in order to prevent oxygen from diffusion into Nb silicide layer and it was identified that the NbSi2 was formed through annealing in $N_2$ ambient at $1100^{\circ}C$ for 1 hour. By the Nb silicide coating on Si tips, the turn-on voltage was decreased from 52.1 V to 32.3 V and average current fluctuation for 1 hour was also reduced from 5% to 2%. Also, the fabricated Nb silicide-coated Si tip FEA emitted electrons toward the phosphor and light emission was obtained at the gate voltage of 40~50 V.

  • PDF

The electrical characteristics of pentacene field-effect transistors with polymer gate insulators

  • Kang, Gi-Wook;Kang, Hee-Young;Park, Kyung-Min;Song, Jun-Ho;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.675-678
    • /
    • 2003
  • We studied the electrical characteristics of pentacene-based organic field-effect transistors (FETs) with polymethyl methacrylate (PMMA) or poly-4-vinylphenol (PVP) as the gate insulator. PMMA or PVP was spin-coated on the indium tin oxide glass substrate that serves as gate electrodes. The source-drain current dependence on the gate voltage shows the FET characteristics of the hole accumulation type. The transistor with PVP shows a higher field-effect mobility of 0.14 $cm^{2}/Vs$ compared with 0.045 $cm^{2}/Vs$ for the transistor with PMMA. The atomic force microscope (AFM) images indicate that the grain size of the pentacene on PVP is larger than that on PMMA. X-ray diffraction (XRD) patterns for the pentacene deposited on PVP exhibit a new Bragg reflection at $19.5{\pm}0.2^{\circ}$, which is absent for the pentacene on PMMA. This peak corresponds to the flat-lying pentacene molecules with less intermolecular spacing.

  • PDF

Fabrication of MFISFET Compatible with CMOS Process Using $SrBi_2Ta_2O_9$(SBT) Materials

  • You, In-Kyu;Lee, Won-Jae;Yang, Il-Suk;Yu, Byoung-Gon;Cho, Kyoung-Ik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • Metal-ferroelectric-insulator-semoiconductor field effect transistor (MFISFETs) were fabricated using CMOS processes. The Pt/SBT/NO combined layers were etched for forming a conformal gate by using Ti/Cr metal masks and a two step etching method, By the method, we were able to fabricate a small-sized gate with the dimension of $16/4{\mu}textrm{m}$ in the width/length of gate. It has been chosen the non-self aligned source and drain implantation process, We have deposited inter-layer dielectrics(ILD) by low pressure chemical vapor deposition(LPCVD) at $380^{circ}C$ after etching the gate structure and the threshold voltage of p-channel MFISFETs were about 1.0 and -2.1V, respectively. It was also observed that the current difference between the $I_{ON}$(on current) and $I_{OFF}$(off current) that is very important in sensing margin, is more that 100 times in $I_{D}-V_{G}$ hysteresis curve.

  • PDF

An Analytical Model for Deriving The Threshold Voltage Expression of A Short-gate Length SOI MESFET (Short-gate SOI MESFET의 문턱 전압 표현 식 도출을 위한 해석적 모델)

  • Kal, Jin-Ha;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-gate SOI MESFET is suggested. Using the iteration method, the Poisson equation in the fully depleted silicon channel and the Laplace equation in the buried oxide region are solved two-dimensionally, Obtained potential distributions in each region are expressed in terms of fifth-order of $\chi$, where $\chi$ denotes the coordinate perpendicular to the silicon channel direction. From them, the bottom channel potential is used to describe the threshold voltage in a closed-form. Simulation results show the dependencies of the threshold voltage on the various device geometry parameters and applied bias voltages.