• Title/Summary/Keyword: Gate Insulator

Search Result 380, Processing Time 0.025 seconds

Study on the Top-Gate Pentacene Thin Film ransistors Using Solution Processing Polymeric Gate Insulator (용액 공정 고분자 게이트 절연체를 이용한 Top-Gate 펜타센 박막 트랜지스터에 관한 연구)

  • Hyung, Gun-Woo;Kim, Jun-Ho;Seo, Ji-Hoon;Koo, Ja-Ryong;Seo, Ji-Hyun;Park, Jae-Hoon;Jung, Young-Ou;Kim, You-Hyun;Kim, Woo-Young;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.388-394
    • /
    • 2008
  • 본 논문에서는 용액 공정을 이용한 고분자 절연층을 갖는 top-gate 구조의 펜타센 박막 트랜지스터(Thin Film Transistor, TFT)의 특성을 연구하였다. Top-gate 구조의 펜타센 TFT 제작에 앞서 유기 반도체인 펜타센의 결정성 성장을 돕기 위해서 가교된 PVP (cross-linked poly(4-vinylphenol))를 유리 기판 상에 스핀 코팅을 이용하여 형성한 후, 노광 공정을 통해 니켈/은 구조를 갖는 채널 길이 $10{\mu}m$의 소오스, 드레인 전극을 형성하였다. 그리고 열 증착을 이용하여 60 nm 두께의 펜타센 층을 성막하였고, 고분자 절연체로서 PVA(polyvinyl alchol) 또는 가교된 PVA를 용액공정인 스핀 코팅을 이용하여 형성한 후 열 증착으로 알루미늄 게이트 전극을 성막하였다. 이로써 제작된 소자들의 전기적 특성을 확인한 결과 가교된 PVA를 사용한 펜타센 TFT 보다 PVA를 게이트 절연체로 사용한 소자가 전기적 특성이 우수한 것으로 관찰되었다. 이는 PVA의 가교 공정에 의한 펜타센 박막의 성능 퇴화에 기인한 것으로 사료된다. 실험 결과 $0.9{\mu}m$ 두께의 PVA 게이트 절연막을 사용한 top-gate 구조의 펜타센 TFT의 전계 효과 이동도와 문턱전압, 그리고 전류 점멸비는 각각, 약 $3.9{\times}10^{-3}\;cm^2/Vs$, -11.5 V, $3{\times}10^5$으로써 본 연구에서 제안된 소자가 용액 공정형 top-gate 유기 TFT 소자로서 우수한 성능을 나타냄을 알 수 있었다.

Device Characteristics of AlGaN/GaN MIS-HFET using $Al_2O_3$ Based High-k Dielectric

  • Park, Ki-Yeol;Cho, Hyun-Ick;Lee, Eun-Jin;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • We present an AlGaN/GaN metal-insulator-semiconductor-heterostructure field effect transistor (MIS-HFET) with an $Al_2O_3-HfO_2$ laminated high-k dielectric, deposited by plasma enhanced atomic layer deposition (PEALD). Based on capacitance-voltage measurements, the dielectric constant of the deposited $Al_2O_3-HfO_2$ laminated layer was estimated to be as high as 15. The fabricated MIS-HFET with a gate length of 102 m exhibited a maximum drain current of 500 mA/mm and maximum tr-ansconductance of 125 mS/mm. The gate leakage current was at least 4 orders of magnitude lower than that of the reference HFET. The pulsed current-voltage curve revealed that the $Al_2O_3-HfO_2$ laminated dielectric effectively passivated the surface of the device.

A study on the growth of $Al_2{O_3}$ insulation films and its application ($Al_2{O_3}$절연박막의 형성과 그 활용방안에 관한 연구)

  • 김종열;정종척;박용희;성만영
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • Aluminum oxide($Al_2{O_3}$) offers some unique advantages over the conventional silicon dioxide( $SiO_{2}$) gate insulator: greater resistance to ionic motion, better radiation hardness, possibility of obtaining low threshold voltage MOS FETs, and possibility of use as the gate insulator in nonvolatile memory devices. We have undertaken a study of the dielectric breakdown of $Al_2{O_3}$ on Si deposited by GAIVBE technique. In our experiments, we have varied the $Al_2{O_3}$ thickness from 300.angs. to 1400.angs. The resistivity of $Al_2{O_3}$ films varies from 108 ohm-cm for films less than 100.angs. to 10$_{13}$ ohm-cm for flims on the order of 1000.angs. The flat band shift is positive, indicating negative charging of oxide. The magnitude of the flat band shift is less for negative bias than for positive bias. The relative dielectric constant was 8.5-10.5 and the electric breakdown fields were 6-7 MV/cm(+bias) and 11-12 MV/cm (-bias).

  • PDF

Leakage Current and Threshold Voltage Characteristics of a-Si:H TFT Depending on Process Conditions (a-Si:H TFT의 누설전류 및 문턱전압 특성 연구)

  • Yang, Kee-Jeong;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.737-740
    • /
    • 2010
  • High leakage current and threshold voltage shift(${\Delta}Vth$) are demerits of a-Si:H TFT. These characteristics are influenced by gate insulator and active layer film quality, surface roughness, and process conditions. The purpose of this investigation is to improve off current($I_{off}$) and ${\Delta}V_{th}$ characteristics. Nitrogen-rich deposition condition was applied to gate insulator, and hydrogen-rich deposition condition was applied to active layer to reduce electron trap site and improve film density. $I_{off}$ improved from 1.01 pA to 0.18 pA at $65^{\circ}C$, and ${\Delta}V_{th}$ improved from -1.89 V to 1.22 V.

The Structure, Surface Morphology and Electrical Properties of ZrO2 Metal-insulator-metal Capacitors (ZrO2 MIM 캐패시터의 구조, 표면 형상 및 전기적 특성)

  • Kim Dae Kyu;Lee Chongmu
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.139-142
    • /
    • 2005
  • [ $ZrO_2$ ] gate dielectric thin films were deposited by radio frequency (rf)-magnetron sputtering and its structure, surface morphology and electrical peoperties were studied. As the oxygen flow rate increases, the surface becomes smoother. The experimental results indicate that a high temperature annealing is desirable since it improves the electrical properties of the $ZrO_2$ gate dielectric thin films by decreasing the number of interfacial traps at the $ZrO_2/Si$ interface. The carrier transport mechanism is dominated by the thermionic emission.

Effect of Side Chain Structure of Gate Insulator on Characteristics of Organic Thin Film Transistor

  • Yi, Mi-Hye;Ha, Sun-Young;Pyo, Seung-Moon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.487-490
    • /
    • 2006
  • We propose a new method to achieve well-defined surface properties of the polymeric gate dielectrics without using SAM technique and inserting another organic/inorganic buffer layer. Pentacene thin film transistors(OTFTs) fabricated with the polyimide gate insulators with different side chain structures were demonstrated. Further, a relationship between the surface properties (surface morphology, surface energy, etc) of the films and the performance of OTFTs have investigated, which will be given in more detail in presentation.

  • PDF

Chebyshev Approximation of Field-Effect Mobility in a-Si:H TFT (비정질 실리콘 박막 트랜지스터에서 전계효과 이동도의 Chebyshev 근사)

  • 박재홍;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper we numerically approximated the field-effect mobility of a-Si:H TFT. Field-effect mobility, based on the charge-trapping model and new effective capacitance model in our study, used Chebyshev approximation was approximated as the function of gate potential(gate-to-channel voltage). Even though various external factors are changed, this formula can be applied by choosing the characteristic coefficients without any change of the approximation formula corresponding to each operation region. Using new approximated field-effect mobility formula, the dependences of field-effect mobility on materials and thickness of gate insulator, thickness of a-Si bulk, and operation temperature in inverted staggered-electrode a-Si:H TFT were estimated. By this was the usefulness of new approximated mobility formula proved.

  • PDF

Improvement of Pentacene TFTs performance by surface treatment on Poly(4-vinylephenol) Gate insulator (Poly (4-vinylephenol) Gate 절연층의 표면 처리에 의한 Pentacene TFT의 성능 비교)

  • Kim, Hong-Suk;Ahn, Seok-Keun;Xu, Yong-Xian;Hang, Seung-Bum;Song, Chung-Kun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.477-478
    • /
    • 2006
  • In this paper, we could improve the mobility with OTS treatment on PVP gate, and also reduce the off-state current, which was usually large after OTS treatment, by using cosolvent. Also we treated Hexamethyl-disilazane (HMDS) and Ozone on PVP. It gives large off-state currents and on-currents.

  • PDF

A dense local block CNT-FEL BLU with common gate structure

  • Jeong, Jin-Woo;Kim, Dong-Il;Kang, Jun-Tae;Kim, Jae-Woo;Song, Yoon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.148-150
    • /
    • 2009
  • We have developed 15 inch, 130 blocks local dimming FEL using printed CNT emitters, in which multiple FE blocks were built with a common gate electrode. Cathode electrode formed by the double-metal technique, in which an insulator is interposed between the addressing bus and cathode electrode.

  • PDF